Not enough data to create a plot.
Try a different view from the menu above.
Country
Kernel Feature Spaces and Nonlinear Blind Souce Separation
Harmeling, Stefan, Ziehe, Andreas, Kawanabe, Motoaki, Müller, Klaus-Robert
In kernel based learning the data is mapped to a kernel feature space of a dimension that corresponds to the number of training data points. In practice, however, the data forms a smaller submanifold in feature space, a fact that has been used e.g. by reduced set techniques for SVMs. We propose a new mathematical construction that permits to adapt to the intrinsic dimension and to find an orthonormal basis of this submanifold. In doing so, computations get much simpler and more important our theoretical framework allows to derive elegant kernelized blind source separation (BSS) algorithms for arbitrary invertible nonlinear mixings. Experiments demonstrate the good performance and high computational efficiency of our kTDSEP algorithm for the problem of nonlinear BSS.
Infinite Mixtures of Gaussian Process Experts
Rasmussen, Carl E., Ghahramani, Zoubin
We present an extension to the Mixture of Experts (ME) model, where the individual experts are Gaussian Process (GP) regression models. Using an input-dependent adaptation of the Dirichlet Process, we implement a gating network for an infinite number of Experts. Inference in this model may be done efficiently using a Markov Chain relying on Gibbs sampling. The model allows the effective covariance function to vary with the inputs, and may handle large datasets - thus potentially overcoming two of the biggest hurdles with GP models.
Unsupervised Learning of Human Motion Models
Song, Yang, Goncalves, Luis, Perona, Pietro
This paper presents an unsupervised learning algorithm that can derive the probabilistic dependence structure of parts of an object (a moving human body in our examples) automatically from unlabeled data. The distinguished part of this work is that it is based on unlabeled data, i.e., the training features include both useful foreground parts and background clutter and the correspondence between the parts and detected features are unknown. We use decomposable triangulated graphs to depict the probabilistic independence of parts, but the unsupervised technique is not limited to this type of graph. In the new approach, labeling of the data (part assignments) is taken as hidden variables and the EM algorithm is applied. A greedy algorithm is developed to select parts and to search for the optimal structure based on the differential entropy of these variables. The success of our algorithm is demonstrated by applying it to generate models of human motion automatically from unlabeled real image sequences.
Latent Dirichlet Allocation
Blei, David M., Ng, Andrew Y., Jordan, Michael I.
We propose a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams [6], and Hofmann's aspect model, also known as probabilistic latent semantic indexing (pLSI) [3]. In the context of text modeling, our model posits that each document is generated as a mixture of topics, where the continuous-valued mixture proportions are distributed as a latent Dirichlet random variable. Inference and learning are carried out efficiently via variational algorithms.
Online Learning with Kernels
Kivinen, Jyrki, Smola, Alex J., Williamson, Robert C.
We consider online learning in a Reproducing Kernel Hilbert Space. Our method is computationally efficient and leads to simple algorithms. In particular we derive update equations for classification, regression, and novelty detection. The inclusion of the -trick allows us to give a robust parameterization.
Iterative Double Clustering for Unsupervised and Semi-Supervised Learning
El-Yaniv, Ran, Souroujon, Oren
We present a powerful meta-clustering technique called Iterative Double Clustering (IDC). The IDC method is a natural extension of the recent Double Clustering (DC) method of Slonim and Tishby that exhibited impressive performance on text categorization tasks [12]. Using synthetically generated data we empirically find that whenever the DC procedure is successful in recovering some of the structure hidden in the data, the extended IDC procedure can incrementally compute a significantly more accurate classification. IDC is especially advantageous when the data exhibits high attribute noise. Our simulation results also show the effectiveness of IDC in text categorization problems. Surprisingly, this unsupervised procedure can be competitive with a (supervised) SVM trained with a small training set. Finally, we propose a simple and natural extension of IDC for semi-supervised and transductive learning where we are given both labeled and unlabeled examples.
The Infinite Hidden Markov Model
Beal, Matthew J., Ghahramani, Zoubin, Rasmussen, Carl E.
We show that it is possible to extend hidden Markov models to have a countably infinite number of hidden states. By using the theory of Dirichlet processes we can implicitly integrate out the infinitely many transition parameters, leaving only three hyperparameters which can be learned from data. These three hyperparameters define a hierarchical Dirichlet process capable of capturing a rich set of transition dynamics. The three hyperparameters control the time scale of the dynamics, the sparsity of the underlying state-transition matrix, and the expected number of distinct hidden states in a finite sequence. In this framework it is also natural to allow the alphabet of emitted symbols to be infinite-- consider, for example, symbols being possible words appearing in English text.