Plotting

 Country


A preliminary analysis on metaheuristics methods applied to the Haplotype Inference Problem

arXiv.org Artificial Intelligence

Haplotype Inference is a challenging problem in bioinformatics that consists in inferring the basic genetic constitution of diploid organisms on the basis of their genotype. This information allows researchers to perform association studies for the genetic variants involved in diseases and the individual responses to therapeutic agents. A notable approach to the problem is to encode it as a combinatorial problem (under certain hypotheses, such as the pure parsimony criterion) and to solve it using off-the-shelf combinatorial optimization techniques. The main methods applied to Haplotype Inference are either simple greedy heuristic or exact methods (Integer Linear Programming, Semidefinite Programming, SAT encoding) that, at present, are adequate only for moderate size instances. We believe that metaheuristic and hybrid approaches could provide a better scalability. Moreover, metaheuristics can be very easily combined with problem specific heuristics and they can also be integrated with tree-based search techniques, thus providing a promising framework for hybrid systems in which a good trade-off between effectiveness and efficiency can be reached. In this paper we illustrate a feasibility study of the approach and discuss some relevant design issues, such as modeling and design of approximate solvers that combine constructive heuristics, local search-based improvement strategies and learning mechanisms. Besides the relevance of the Haplotype Inference problem itself, this preliminary analysis is also an interesting case study because the formulation of the problem poses some challenges in modeling and hybrid metaheuristic solver design that can be generalized to other problems.


Efficient independent component analysis

arXiv.org Machine Learning

Independent component analysis (ICA) has been widely used for blind source separation in many fields such as brain imaging analysis, signal processing and telecommunication. Many statistical techniques based on M-estimates have been proposed for estimating the mixing matrix. Recently, several nonparametric methods have been developed, but in-depth analysis of asymptotic efficiency has not been available. We analyze ICA using semiparametric theories and propose a straightforward estimate based on the efficient score function by using B-spline approximations. The estimate is asymptotically efficient under moderate conditions and exhibits better performance than standard ICA methods in a variety of simulations.


Bijective Faithful Translations among Default Logics

arXiv.org Artificial Intelligence

In this article, we study translations between variants of defaults logics such that the extensions of the theories that are the input and the output of the translation are in a bijective correspondence. We assume that a translation can introduce new variables and that the result of translating a theory can either be produced in time polynomial in the size of the theory or its output is polynomial in that size; we however restrict to the case in which the original theory has extensions. This study fills a gap between two previous pieces of work, one studying bijective translations among restrictions of default logics, and the other one studying non-bijective translations between default logics variants.


A Leaf Recognition Algorithm for Plant Classification Using Probabilistic Neural Network

arXiv.org Artificial Intelligence

In this paper, we employ Probabilistic Neural Network (PNN) with image and data processing techniques to implement a general purpose automated leaf recognition algorithm. 12 leaf features are extracted and orthogonalized into 5 principal variables which consist the input vector of the PNN. The PNN is trained by 1800 leaves to classify 32 kinds of plants with an accuracy greater than 90%. Compared with other approaches, our algorithm is an accurate artificial intelligence approach which is fast in execution and easy in implementation.


Learning Probabilistic Models of Word Sense Disambiguation

arXiv.org Artificial Intelligence

This dissertation presents several new methods of supervised and unsupervised learning of word sense disambiguation models. The supervised methods focus on performing model searches through a space of probabilistic models, and the unsupervised methods rely on the use of Gibbs Sampling and the Expectation Maximization (EM) algorithm. In both the supervised and unsupervised case, the Naive Bayesian model is found to perform well. An explanation for this success is presented in terms of learning rates and bias-variance decompositions.


Practical Approach to Knowledge-based Question Answering with Natural Language Understanding and Advanced Reasoning

arXiv.org Artificial Intelligence

This research hypothesized that a practical approach in the form of a solution framework known as Natural Language Understanding and Reasoning for Intelligence (NaLURI), which combines full-discourse natural language understanding, powerful representation formalism capable of exploiting ontological information and reasoning approach with advanced features, will solve the following problems without compromising practicality factors: 1) restriction on the nature of question and response, and 2) limitation to scale across domains and to real-life natural language text.


A Generalized Information Formula as the Bridge between Shannon and Popper

arXiv.org Artificial Intelligence

A generalized information formula related to logical probability and fuzzy set is deduced from the classical information formula. The new information measure accords with to Popper's criterion for knowledge evolution very much. In comparison with square error criterion, the information criterion does not only reflect error of a proposition, but also reflects the particularity of the event described by the proposition. It gives a proposition with less logical probability higher evaluation. The paper introduces how to select a prediction or sentence from many for forecasts and language translations according to the generalized information criterion. It also introduces the rate fidelity theory, which comes from the improvement of the rate distortion theory in the classical information theory by replacing distortion (i.e. average error) criterion with the generalized mutual information criterion, for data compression and communication efficiency. Some interesting conclusions are obtained from the rate-fidelity function in relation to image communication. It also discusses how to improve Popper's theory.


Neutrality and Many-Valued Logics

arXiv.org Artificial Intelligence

In this book, we consider various many-valued logics: standard, linear, hyperbolic, parabolic, non-Archimedean, p-adic, interval, neutrosophic, etc. We survey also results which show the tree different proof-theoretic frameworks for many-valued logics, e.g. frameworks of the following deductive calculi: Hilbert's style, sequent, and hypersequent. We present a general way that allows to construct systematically analytic calculi for a large family of non-Archimedean many-valued logics: hyperrational-valued, hyperreal-valued, and p-adic valued logics characterized by a special format of semantics with an appropriate rejection of Archimedes' axiom. These logics are built as different extensions of standard many-valued logics (namely, Lukasiewicz's, Goedel's, Product, and Post's logics). The informal sense of Archimedes' axiom is that anything can be measured by a ruler. Also logical multiple-validity without Archimedes' axiom consists in that the set of truth values is infinite and it is not well-founded and well-ordered. On the base of non-Archimedean valued logics, we construct non-Archimedean valued interval neutrosophic logic INL by which we can describe neutrality phenomena.


Mixed Integer Linear Programming For Exact Finite-Horizon Planning In Decentralized Pomdps

arXiv.org Artificial Intelligence

We consider the problem of finding an n-agent joint-policy for the optimal finite-horizon control of a decentralized Pomdp (Dec-Pomdp). This is a problem of very high complexity (NEXP-hard in n >= 2). In this paper, we propose a new mathematical programming approach for the problem. Our approach is based on two ideas: First, we represent each agent's policy in the sequence-form and not in the tree-form, thereby obtaining a very compact representation of the set of joint-policies. Second, using this compact representation, we solve this problem as an instance of combinatorial optimization for which we formulate a mixed integer linear program (MILP). The optimal solution of the MILP directly yields an optimal joint-policy for the Dec-Pomdp. Computational experience shows that formulating and solving the MILP requires significantly less time to solve benchmark Dec-Pomdp problems than existing algorithms. For example, the multi-agent tiger problem for horizon 4 is solved in 72 secs with the MILP whereas existing algorithms require several hours to solve it.


Clusters, Graphs, and Networks for Analysing Internet-Web-Supported Communication within a Virtual Community

arXiv.org Artificial Intelligence

The proposal is to use clusters, graphs and networks as models in order to analyse the Web structure. Clusters, graphs and networks provide knowledge representation and organization. Clusters were generated by co-site analysis. The sample is a set of academic Web sites from the countries belonging to the European Union. These clusters are here revisited from the point of view of graph theory and social network analysis. This is a quantitative and structural analysis. In fact, the Internet is a computer network that connects people and organizations. Thus we may consider it to be a social network. The set of Web academic sites represents an empirical social network, and is viewed as a virtual community. The network structural properties are here analysed applying together cluster analysis, graph theory and social network analysis.