Plotting

 Country


Non-Convex Rank Minimization via an Empirical Bayesian Approach

arXiv.org Machine Learning

In many applications that require matrix solutions of minimal rank, the underlying cost function is non-convex leading to an intractable, NP-hard optimization problem. Consequently, the convex nuclear norm is frequently used as a surrogate penalty term for matrix rank. The problem is that in many practical scenarios there is no longer any guarantee that we can correctly estimate generative low-rank matrices of interest, theoretical special cases notwithstanding. Consequently, this paper proposes an alternative empirical Bayesian procedure build upon a variational approximation that, unlike the nuclear norm, retains the same globally minimizing point estimate as the rank function under many useful constraints. However, locally minimizing solutions are largely smoothed away via marginalization, allowing the algorithm to succeed when standard convex relaxations completely fail. While the proposed methodology is generally applicable to a wide range of low-rank applications, we focus our attention on the robust principal component analysis problem (RPCA), which involves estimating an unknown low-rank matrix with unknown sparse corruptions. Theoretical and empirical evidence are presented to show that our method is potentially superior to related MAP-based approaches, for which the convex principle component pursuit (PCP) algorithm (Candes et al., 2011) can be viewed as a special case.


Guess Who Rated This Movie: Identifying Users Through Subspace Clustering

arXiv.org Machine Learning

It is often the case that, within an online recommender system, multiple users share a common account. Can such shared accounts be identified solely on the basis of the userprovided ratings? Once a shared account is identified, can the different users sharing it be identified as well? Whenever such user identification is feasible, it opens the way to possible improvements in personalized recommendations, but also raises privacy concerns. We develop a model for composite accounts based on unions of linear subspaces, and use subspace clustering for carrying out the identification task. We show that a significant fraction of such accounts is identifiable in a reliable manner, and illustrate potential uses for personalized recommendation.


Robust Graphical Modeling with t-Distributions

arXiv.org Machine Learning

Graphical Gaussian models have proven to be useful tools for exploring network structures based on multivariate data. Applications to studies of gene expression have generated substantial interest in these models, and resulting recent progress includes the development of fitting methodology involving penalization of the likelihood function. In this paper we advocate the use of the multivariate t and related distributions for more robust inference of graphs. In particular, we demonstrate that penalized likelihood inference combined with an application of the EM algorithm provides a simple and computationally efficient approach to model selection in the t-distribution case.


Algorithms for Approximate Minimization of the Difference Between Submodular Functions, with Applications

arXiv.org Machine Learning

We extend the work of Narasimhan and Bilmes [30] for minimizing set functions representable as a dierence between submodular functions. Similar to [30], our new algorithms are guaranteed to monotonically reduce the objective function at every step. We empirically and theoretically show that the per-iteration cost of our algorithms is much less than [30], and our algorithms can be used to efficiently minimize a dierence between submodular functions under various combinatorial constraints, a problem not previously addressed. We provide computational bounds and a hardness result on the multiplicative inapproximability of minimizing the dierence between submodular functions. We show, however, that it is possible to give worst-case additive bounds by providing a polynomial time computable lower-bound on the minima. Finally we show how a number of machine learning problems can be modeled as minimizing the dierence between submodular functions. We experimentally show the validity of our algorithms by testing them on the problem of feature selection with submodular cost features.


Learning Graphical Models With Hubs

arXiv.org Machine Learning

We consider the problem of learning a high-dimensional graphical model in which certain hub nodes are highly-connected to many other nodes. Many authors have studied the use of an l1 penalty in order to learn a sparse graph in high-dimensional setting. However, the l1 penalty implicitly assumes that each edge is equally likely and independent of all other edges. We propose a general framework to accommodate more realistic networks with hub nodes, using a convex formulation that involves a row-column overlap norm penalty. We apply this general framework to three widely-used probabilistic graphical models: the Gaussian graphical model, the covariance graph model, and the binary Ising model. An alternating direction method of multipliers algorithm is used to solve the corresponding convex optimization problems. On synthetic data, we demonstrate that our proposed framework outperforms competitors that do not explicitly model hub nodes. We illustrate our proposal on a webpage data set and a gene expression data set.


Probabilistic inverse reinforcement learning in unknown environments

arXiv.org Machine Learning

We consider the problem of learning by demonstration from agents acting in unknown stochastic Markov environments or games. Our aim is to estimate agent preferences in order to construct improved policies for the same task that the agents are trying to solve. To do so, we extend previous probabilistic approaches for inverse reinforcement learning in known MDPs to the case of unknown dynamics or opponents. We do this by deriving two simplified probabilistic models of the demonstrator's policy and utility. For tractability, we use maximum a posteriori estimation rather than full Bayesian inference. Under a flat prior, this results in a convex optimisation problem. We find that the resulting algorithms are highly competitive against a variety of other methods for inverse reinforcement learning that do have knowledge of the dynamics.


The Lovasz-Bregman Divergence and connections to rank aggregation, clustering, and web ranking

arXiv.org Machine Learning

We extend the recently introduced theory of Lovasz-Bregman (LB) divergences (Iyer & Bilmes 2012) in several ways. We show that they represent a distortion between a "score" and an "ordering", thus providing a new view of rank aggregation and order based clustering with interesting connections to web ranking. We show how the LB divergences have a number of properties akin to many permutation based metrics, and in fact have as special cases forms very similar to the Kendall-tau metric. We also show how the LB divergences subsume a number of commonly used ranking measures in information retrieval, like NDCG and AUC. Unlike the traditional permutation based metrics, however, the LB divergence naturally captures a notion of "confidence" in the orderings, thus providing a new representation to applications involving aggregating scores as opposed to just orderings. We show how a number of recently used web ranking models are forms of Lovasz-Bregman rank aggregation and also observe that a natural form of Mallow's model using the LB divergence has been used as conditional ranking models for the "Learning to Rank" problem.


Parallel Gaussian Process Regression with Low-Rank Covariance Matrix Approximations

arXiv.org Machine Learning

Gaussian processes (GP) are Bayesian non-parametric models that are widely used for probabilistic regression. Unfortunately, it cannot scale well with large data nor perform real-time predictions due to its cubic time cost in the data size. This paper presents two parallel GP regression methods that exploit low-rank covariance matrix approximations for distributing the computational load among parallel machines to achieve time efficiency and scalability. We theoretically guarantee the predictive performances of our proposed parallel GPs to be equivalent to that of some centralized approximate GP regression methods: The computation of their centralized counterparts can be distributed among parallel machines, hence achieving greater time efficiency and scalability. We analytically compare the properties of our parallel GPs such as time, space, and communication complexity. Empirical evaluation on two real-world datasets in a cluster of 20 computing nodes shows that our parallel GPs are significantly more time-efficient and scalable than their centralized counterparts and exact/full GP while achieving predictive performances comparable to full GP.


Statistical guarantees for the EM algorithm: From population to sample-based analysis

arXiv.org Machine Learning

We develop a general framework for proving rigorous guarantees on the performance of the EM algorithm and a variant known as gradient EM. Our analysis is divided into two parts: a treatment of these algorithms at the population level (in the limit of infinite data), followed by results that apply to updates based on a finite set of samples. First, we characterize the domain of attraction of any global maximizer of the population likelihood. This characterization is based on a novel view of the EM updates as a perturbed form of likelihood ascent, or in parallel, of the gradient EM updates as a perturbed form of standard gradient ascent. Leveraging this characterization, we then provide non-asymptotic guarantees on the EM and gradient EM algorithms when applied to a finite set of samples. We develop consequences of our general theory for three canonical examples of incomplete-data problems: mixture of Gaussians, mixture of regressions, and linear regression with covariates missing completely at random. In each case, our theory guarantees that with a suitable initialization, a relatively small number of EM (or gradient EM) steps will yield (with high probability) an estimate that is within statistical error of the MLE. We provide simulations to confirm this theoretically predicted behavior.


Warped Mixtures for Nonparametric Cluster Shapes

arXiv.org Machine Learning

A mixture of Gaussians fit to a single curved or heavy-tailed cluster will report that the data contains many clusters. To produce more appropriate clusterings, we introduce a model which warps a latent mixture of Gaussians to produce nonparametric cluster shapes. The possibly low-dimensional latent mixture model allows us to summarize the properties of the high-dimensional clusters (or density manifolds) describing the data. The number of manifolds, as well as the shape and dimension of each manifold is automatically inferred. We derive a simple inference scheme for this model which analytically integrates out both the mixture parameters and the warping function. We show that our model is effective for density estimation, performs better than infinite Gaussian mixture models at recovering the true number of clusters, and produces interpretable summaries of high-dimensional datasets.