Not enough data to create a plot.
Try a different view from the menu above.
Country
On the Possibility of Learning in Reactive Environments with Arbitrary Dependence
Ryabko, Daniil, Hutter, Marcus
We address the problem of reinforcement learning in which observations may exhibit an arbitrary form of stochastic dependence on past observations and actions, i.e. environments more general than (PO)MDPs. The task for an agent is to attain the best possible asymptotic reward where the true generating environment is unknown but belongs to a known countable family of environments. We find some sufficient conditions on the class of environments under which an agent exists which attains the best asymptotic reward for any environment in the class. We analyze how tight these conditions are and how they relate to different probabilistic assumptions known in reinforcement learning and related fields, such as Markov Decision Processes and mixing conditions.
On the Conditional Independence Implication Problem: A Lattice-Theoretic Approach
Niepert, Mathias, Van Gucht, Dirk, Gyssens, Marc
A lattice-theoretic framework is introduced that permits the study of the conditional independence (CI) implication problem relative to the class of discrete probability measures. Semi-lattices are associated with CI statements and a finite, sound and complete inference system relative to semi-lattice inclusions is presented. This system is shown to be (1) sound and complete for saturated CI statements, (2) complete for general CI statements, and (3) sound and complete for stable CI statements. These results yield a criterion that can be used to falsify instances of the implication problem and several heuristics are derived that approximate this "lattice-exclusion" criterion in polynomial time. Finally, we provide experimental results that relate our work to results obtained from other existing inference algorithms.
Temporal Difference Updating without a Learning Rate
We derive an equation for temporal difference learning from statistical principles. Specifically, we start with the variational principle and then bootstrap to produce an updating rule for discounted state value estimates. The resulting equation is similar to the standard equation for temporal difference learning with eligibility traces, so called TD(lambda), however it lacks the parameter alpha that specifies the learning rate. In the place of this free parameter there is now an equation for the learning rate that is specific to each state transition. We experimentally test this new learning rule against TD(lambda) and find that it offers superior performance in various settings. Finally, we make some preliminary investigations into how to extend our new temporal difference algorithm to reinforcement learning. To do this we combine our update equation with both Watkins' Q(lambda) and Sarsa(lambda) and find that it again offers superior performance without a learning rate parameter.
Gibbs posterior for variable selection in high-dimensional classification and data mining
Jiang, Wenxin, Tanner, Martin A.
In the popular approach of "Bayesian variable selection" (BVS), one uses prior and posterior distributions to select a subset of candidate variables to enter the model. A completely new direction will be considered here to study BVS with a Gibbs posterior originating in statistical mechanics. The Gibbs posterior is constructed from a risk function of practical interest (such as the classification error) and aims at minimizing a risk function without modeling the data probabilistically. This can improve the performance over the usual Bayesian approach, which depends on a probability model which may be misspecified. Conditions will be provided to achieve good risk performance, even in the presence of high dimensionality, when the number of candidate variables "$K$" can be much larger than the sample size "$n$." In addition, we develop a convenient Markov chain Monte Carlo algorithm to implement BVS with the Gibbs posterior.
Choice of neighbor order in nearest-neighbor classification
Hall, Peter, Park, Byeong U., Samworth, Richard J.
The $k$th-nearest neighbor rule is arguably the simplest and most intuitively appealing nonparametric classification procedure. However, application of this method is inhibited by lack of knowledge about its properties, in particular, about the manner in which it is influenced by the value of $k$; and by the absence of techniques for empirical choice of $k$. In the present paper we detail the way in which the value of $k$ determines the misclassification error. We consider two models, Poisson and Binomial, for the training samples. Under the first model, data are recorded in a Poisson stream and are "assigned" to one or other of the two populations in accordance with the prior probabilities. In particular, the total number of data in both training samples is a Poisson-distributed random variable. Under the Binomial model, however, the total number of data in the training samples is fixed, although again each data value is assigned in a random way. Although the values of risk and regret associated with the Poisson and Binomial models are different, they are asymptotically equivalent to first order, and also to the risks associated with kernel-based classifiers that are tailored to the case of two derivatives. These properties motivate new methods for choosing the value of $k$.
Statistical Learning Theory: Models, Concepts, and Results
von Luxburg, Ulrike, Schoelkopf, Bernhard
Statistical learning theory provides the theoretical basis for many of today's machine learning algorithms. In this article we attempt to give a gentle, non-technical overview over the key ideas and insights of statistical learning theory. We target at a broad audience, not necessarily machine learning researchers. This paper can serve as a starting point for people who want to get an overview on the field before diving into technical details.
On Granular Knowledge Structures
Knowledge plays a central role in human and artificial intelligence. One of the key characteristics of knowledge is its structured organization. Knowledge can be and should be presented in multiple levels and multiple views to meet people's needs in different levels of granularities and from different perspectives. In this paper, we stand on the view point of granular computing and provide our understanding on multi-level and multi-view of knowledge through granular knowledge structures (GKS). Representation of granular knowledge structures, operations for building granular knowledge structures and how to use them are investigated. As an illustration, we provide some examples through results from an analysis of proceeding papers. Results show that granular knowledge structures could help users get better understanding of the knowledge source from set theoretical, logical and visual point of views. One may consider using them to meet specific needs or solve certain kinds of problems.
Online Coordinate Boosting
Pelossof, Raphael, Jones, Michael, Vovsha, Ilia, Rudin, Cynthia
We present a new online boosting algorithm for adapting the weights of a boosted classifier, which yields a closer approximation to Freund and Schapire's AdaBoost algorithm than previous online boosting algorithms. We also contribute a new way of deriving the online algorithm that ties together previous online boosting work. We assume that the weak hypotheses were selected beforehand, and only their weights are updated during online boosting. The update rule is derived by minimizing AdaBoost's loss when viewed in an incremental form. The equations show that optimization is computationally expensive. However, a fast online approximation is possible. We compare approximation error to batch AdaBoost on synthetic datasets and generalization error on face datasets and the MNIST dataset.
Quantum reinforcement learning
Dong, Daoyi, Chen, Chunlin, Li, Hanxiong, Tarn, Tzyh-Jong
The key approaches for machine learning, especially learning in unknown probabilistic environments are new representations and computation mechanisms. In this paper, a novel quantum reinforcement learning (QRL) method is proposed by combining quantum theory and reinforcement learning (RL). Inspired by the state superposition principle and quantum parallelism, a framework of value updating algorithm is introduced. The state (action) in traditional RL is identified as the eigen state (eigen action) in QRL. The state (action) set can be represented with a quantum superposition state and the eigen state (eigen action) can be obtained by randomly observing the simulated quantum state according to the collapse postulate of quantum measurement. The probability of the eigen action is determined by the probability amplitude, which is parallelly updated according to rewards. Some related characteristics of QRL such as convergence, optimality and balancing between exploration and exploitation are also analyzed, which shows that this approach makes a good tradeoff between exploration and exploitation using the probability amplitude and can speed up learning through the quantum parallelism. To evaluate the performance and practicability of QRL, several simulated experiments are given and the results demonstrate the effectiveness and superiority of QRL algorithm for some complex problems. The present work is also an effective exploration on the application of quantum computation to artificial intelligence.
Relationship between Diversity and Perfomance of Multiple Classifiers for Decision Support
Musehane, R., Netshiongolwe, F., Nelwamondo, F. V., Masisi, L., Marwala, T.
The paper presents the investigation and implementation of the relationship between diversity and the performance of multiple classifiers on classification accuracy. The study is critical as to build classifiers that are strong and can generalize better. The parameters of the neural network within the committee were varied to induce diversity; hence structural diversity is the focus for this study. The hidden nodes and the activation function are the parameters that were varied. The diversity measures that were adopted from ecology such as Shannon and Simpson were used to quantify diversity. Genetic algorithm is used to find the optimal ensemble by using the accuracy as the cost function. The results observed shows that there is a relationship between structural diversity and accuracy. It is observed that the classification accuracy of an ensemble increases as the diversity increases. There was an increase of 3%-6% in the classification accuracy.