Not enough data to create a plot.
Try a different view from the menu above.
Country
Essentials of Game Theory: A Concise Multidisciplinary Introduction
Leyton-Brown, Kevin, Shoham, Yoav
This is a concise and accessible introduction to the field of game theory. The audience for game theory has drastically expanded and now is used in diverse disciplines such as political science, biology, psychology, economics, linguistics, sociology, and computer science. The book covers the main classes of games, their representations, and the main concepts used to analyze them. ISBN 9781598295931, 88 pages.
Modeling Loosely Annotated Images with Imagined Annotations
Tang, Hong, Boujemma, Nozha, Chen, Yunhao
In this paper, we present an approach to learning latent semantic analysis models from loosely annotated images for automatic image annotation and indexing. The given annotation in training images is loose due to: (1) ambiguous correspondences between visual features and annotated keywords; (2) incomplete lists of annotated keywords. The second reason motivates us to enrich the incomplete annotation in a simple way before learning topic models. In particular, some imagined keywords are poured into the incomplete annotation through measuring similarity between keywords. Then, both given and imagined annotations are used to learning probabilistic topic models for automatically annotating new images. We conduct experiments on a typical Corel dataset of images and loose annotations, and compare the proposed method with state-of-the-art discrete annotation methods (using a set of discrete blobs to represent an image). The proposed method improves word-driven probability Latent Semantic Analysis (PLSA-words) up to a comparable performance with the best discrete annotation method, while a merit of PLSA-words is still kept, i.e., a wider semantic range.
Rock mechanics modeling based on soft granulation theory
This paper describes application of information granulation theory, on the design of rock engineering flowcharts. Firstly, an overall flowchart, based on information granulation theory has been highlighted. Information granulation theory, in crisp (non-fuzzy) or fuzzy format, can take into account engineering experiences (especially in fuzzy shape-incomplete information or superfluous), or engineering judgments, in each step of designing procedure, while the suitable instruments modeling are employed. In this manner and to extension of soft modeling instruments, using three combinations of Self Organizing Map (SOM), Neuro-Fuzzy Inference System (NFIS), and Rough Set Theory (RST) crisp and fuzzy granules, from monitored data sets are obtained. The main underlined core of our algorithms are balancing of crisp(rough or non-fuzzy) granules and sub fuzzy granules, within non fuzzy information (initial granulation) upon the open-close iterations. Using different criteria on balancing best granules (information pockets), are obtained. Validations of our proposed methods, on the data set of in-situ permeability in rock masses in Shivashan dam, Iran have been highlighted.
Intuitive visualization of the intelligence for the run-down of terrorist wire-pullers
Maeno, Yoshiharu, Ohsawa, Yukio
The investigation of the terrorist attack is a time-critical task. The investigators have a limited time window to diagnose the organizational background of the terrorists, to run down and arrest the wire-pullers, and to take an action to prevent or eradicate the terrorist attack. The intuitive interface to visualize the intelligence data set stimulates the investigators' experience and knowledge, and aids them in decision-making for an immediately effective action. This paper presents a computational method to analyze the intelligence data set on the collective actions of the perpetrators of the attack, and to visualize it into the form of a social network diagram which predicts the positions where the wire-pullers conceals themselves.
The Structure of Narrative: the Case of Film Scripts
Murtagh, Fionn, Ganz, Adam, McKie, Stewart
We analyze the style and structure of story narrative using the case of film scripts. The practical importance of this is noted, especially the need to have support tools for television movie writing. We use the Casablanca film script, and scripts from six episodes of CSI (Crime Scene Investigation). For analysis of style and structure, we quantify various central perspectives discussed in McKee's book, "Story: Substance, Structure, Style, and the Principles of Screenwriting". Film scripts offer a useful point of departure for exploration of the analysis of more general narratives. Our methodology, using Correspondence Analysis, and hierarchical clustering, is innovative in a range of areas that we discuss. In particular this work is groundbreaking in taking the qualitative analysis of McKee and grounding this analysis in a quantitative and algorithmic framework.
An Evolutionary-Based Approach to Learning Multiple Decision Models from Underrepresented Data
Schetinin, Vitaly, Li, Dayou, Maple, Carsten
The use of multiple Decision Models (DMs) enables to enhance the accuracy in decisions and at the same time allows users to evaluate the confidence in decision making. In this paper we explore the ability of multiple DMs to learn from a small amount of verified data. This becomes important when data samples are difficult to collect and verify. We propose an evolutionary-based approach to solving this problem. The proposed technique is examined on a few clinical problems presented by a small amount of data.
Feature Selection for Bayesian Evaluation of Trauma Death Risk
In the last year more than 70,000 people have been brought to the UK hospitals with serious injuries. Each time a clinician has to urgently take a patient through a screening procedure to make a reliable decision on the trauma treatment. Typically, such procedure comprises around 20 tests; however the condition of a trauma patient remains very difficult to be tested properly. What happens if these tests are ambiguously interpreted, and information about the severity of the injury will come misleading? The mistake in a decision can be fatal: using a mild treatment can put a patient at risk of dying from posttraumatic shock, while using an overtreatment can also cause death. How can we reduce the risk of the death caused by unreliable decisions? It has been shown that probabilistic reasoning, based on the Bayesian methodology of averaging over decision models, allows clinicians to evaluate the uncertainty in decision making. Based on this methodology, in this paper we aim at selecting the most important screening tests, keeping a high performance. We assume that the probabilistic reasoning within the Bayesian methodology allows us to discover new relationships between the screening tests and uncertainty in decisions. In practice, selection of the most informative tests can also reduce the cost of a screening procedure in trauma care centers. In our experiments we use the UK Trauma data to compare the efficiency of the proposed technique in terms of the performance. We also compare the uncertainty in decisions in terms of entropy.
High-dimensional subset recovery in noise: Sparsified measurements without loss of statistical efficiency
Omidiran, Dapo, Wainwright, Martin J.
We consider the problem of estimating the support of a vector $\beta^* \in \mathbb{R}^{p}$ based on observations contaminated by noise. A significant body of work has studied behavior of $\ell_1$-relaxations when applied to measurement matrices drawn from standard dense ensembles (e.g., Gaussian, Bernoulli). In this paper, we analyze \emph{sparsified} measurement ensembles, and consider the trade-off between measurement sparsity, as measured by the fraction $\gamma$ of non-zero entries, and the statistical efficiency, as measured by the minimal number of observations $n$ required for exact support recovery with probability converging to one. Our main result is to prove that it is possible to let $\gamma \to 0$ at some rate, yielding measurement matrices with a vanishing fraction of non-zeros per row while retaining the same statistical efficiency as dense ensembles. A variety of simulation results confirm the sharpness of our theoretical predictions.
On the Effects of Idiotypic Interactions for Recommendation Communities in Artificial Immune Systems
It has previously been shown that a recommender based on immune system idiotypic principles can out perform one based on correlation alone. This paper reports the results of work in progress, where we undertake some investigations into the nature of this beneficial effect. The initial findings are that the immune system recommender tends to produce different neighbourhoods, and that the superior performance of this recommender is due partly to the different neighbourhoods, and partly to the way that the idiotypic effect is used to weight each neighbours recommendations.
Artificial Immune Systems (AIS) - A New Paradigm for Heuristic Decision Making
Over the last few years, more and more heuristic decision making techniques have been inspired by nature, e.g. evolutionary algorithms, ant colony optimisation and simulated annealing. More recently, a novel computational intelligence technique inspired by immunology has emerged, called Artificial Immune Systems (AIS). This immune system inspired technique has already been useful in solving some computational problems. In this keynote, we will very briefly describe the immune system metaphors that are relevant to AIS. We will then give some illustrative real-world problems suitable for AIS use and show a step-by-step algorithm walkthrough. A comparison of AIS to other well-known algorithms and areas for future work will round this keynote off. It should be noted that as AIS is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from the examples given here.