Plotting

 Country


A general approach to belief change in answer set programming

arXiv.org Artificial Intelligence

We address the problem of belief change in (nonmonotonic) logic programming under answer set semantics. Unlike previous approaches to belief change in logic programming, our formal techniques are analogous to those of distance-based belief revision in propositional logic. In developing our results, we build upon the model theory of logic programs furnished by SE models. Since SE models provide a formal, monotonic characterisation of logic programs, we can adapt techniques from the area of belief revision to belief change in logic programs. We introduce methods for revising and merging logic programs, respectively. For the former, we study both subset-based revision as well as cardinality-based revision, and we show that they satisfy the majority of the AGM postulates for revision. For merging, we consider operators following arbitration merging and IC merging, respectively. We also present encodings for computing the revision as well as the merging of logic programs within the same logic programming framework, giving rise to a direct implementation of our approach in terms of off-the-shelf answer set solvers. These encodings reflect in turn the fact that our change operators do not increase the complexity of the base formalism.


Oriented Straight Line Segment Algebra: Qualitative Spatial Reasoning about Oriented Objects

arXiv.org Artificial Intelligence

Nearly 15 years ago, a set of qualitative spatial relations between oriented straight line segments (dipoles) was suggested by Schlieder. This work received substantial interest amongst the qualitative spatial reasoning community. However, it turned out to be difficult to establish a sound constraint calculus based on these relations. In this paper, we present the results of a new investigation into dipole constraint calculi which uses algebraic methods to derive sound results on the composition of relations and other properties of dipole calculi. Our results are based on a condensed semantics of the dipole relations. In contrast to the points that are normally used, dipoles are extended and have an intrinsic direction. Both features are important properties of natural objects. This allows for a straightforward representation of prototypical reasoning tasks for spatial agents. As an example, we show how to generate survey knowledge from local observations in a street network. The example illustrates the fast constraint-based reasoning capabilities of the dipole calculus. We integrate our results into two reasoning tools which are publicly available.


Believe It or Not: Adding Belief Annotations to Databases

arXiv.org Artificial Intelligence

We propose a database model that allows users to annotate data with belief statements. Our motivation comes from scientific database applications where a community of users is working together to assemble, revise, and curate a shared data repository. As the community accumulates knowledge and the database content evolves over time, it may contain conflicting information and members can disagree on the information it should store. For example, Alice may believe that a tuple should be in the database, whereas Bob disagrees. He may also insert the reason why he thinks Alice believes the tuple should be in the database, and explain what he thinks the correct tuple should be instead. We propose a formal model for Belief Databases that interprets users' annotations as belief statements. These annotations can refer both to the base data and to other annotations. We give a formal semantics based on a fragment of multi-agent epistemic logic and define a query language over belief databases. We then prove a key technical result, stating that every belief database can be encoded as a canonical Kripke structure. We use this structure to describe a relational representation of belief databases, and give an algorithm for translating queries over the belief database into standard relational queries. Finally, we report early experimental results with our prototype implementation on synthetic data.


The Computational Structure of Spike Trains

arXiv.org Machine Learning

Neurons perform computations, and convey the results of those computations through the statistical structure of their output spike trains. Here we present a practical method, grounded in the information-theoretic analysis of prediction, for inferring a minimal representation of that structure and for characterizing its complexity. Starting from spike trains, our approach finds their causal state models (CSMs), the minimal hidden Markov models or stochastic automata capable of generating statistically identical time series. We then use these CSMs to objectively quantify both the generalizable structure and the idiosyncratic randomness of the spike train. Specifically, we show that the expected algorithmic information content (the information needed to describe the spike train exactly) can be split into three parts describing (1) the time-invariant structure (complexity) of the minimal spike-generating process, which describes the spike train statistically; (2) the randomness (internal entropy rate) of the minimal spike-generating process; and (3) a residual pure noise term not described by the minimal spike-generating process. We use CSMs to approximate each of these quantities. The CSMs are inferred nonparametrically from the data, making only mild regularity assumptions, via the causal state splitting reconstruction algorithm. The methods presented here complement more traditional spike train analyses by describing not only spiking probability and spike train entropy, but also the complexity of a spike train's structure. We demonstrate our approach using both simulated spike trains and experimental data recorded in rat barrel cortex during vibrissa stimulation.


Why so? or Why no? Functional Causality for Explaining Query Answers

arXiv.org Artificial Intelligence

In this paper, we propose causality as a unified framework to explain query answers and non-answers, thus generalizing and extending several previously proposed approaches of provenance and missing query result explanations. We develop our framework starting from the well-studied definition of actual causes by Halpern and Pearl. After identifying some undesirable characteristics of the original definition, we propose functional causes as a refined definition of causality with several desirable properties. These properties allow us to apply our notion of causality in a database context and apply it uniformly to define the causes of query results and their individual contributions in several ways: (i) we can model both provenance as well as non-answers, (ii) we can define explanations as either data in the input relations or relational operations in a query plan, and (iii) we can give graded degrees of responsibility to individual causes, thus allowing us to rank causes. In particular, our approach allows us to explain contributions to relational aggregate functions and to rank causes according to their respective responsibilities. We give complexity results and describe polynomial algorithms for evaluating causality in tractable cases. Throughout the paper, we illustrate the applicability of our framework with several examples. Overall, we develop in this paper the theoretical foundations of causality theory in a database context.


A survey of statistical network models

arXiv.org Machine Learning

Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.


Restricted Eigenvalue Conditions on Subgaussian Random Matrices

arXiv.org Machine Learning

It is natural to ask: what kinds of matrices satisfy the Restricted Eigenvalue (RE) condition? In this paper, we associate the RE condition (Bickel-Ritov-Tsybakov 09) with the complexity of a subset of the sphere in $\R^p$, where $p$ is the dimensionality of the data, and show that a class of random matrices with independent rows, but not necessarily independent columns, satisfy the RE condition, when the sample size is above a certain lower bound. Here we explicitly introduce an additional covariance structure to the class of random matrices that we have known by now that satisfy the Restricted Isometry Property as defined in Candes and Tao 05 (and hence the RE condition), in order to compose a broader class of random matrices for which the RE condition holds. In this case, tools from geometric functional analysis in characterizing the intrinsic low-dimensional structures associated with the RE condition has been crucial in analyzing the sample complexity and understanding its statistical implications for high dimensional data.


On Finding Predictors for Arbitrary Families of Processes

arXiv.org Artificial Intelligence

The problem is sequence prediction in the following setting. A sequence $x_1,...,x_n,...$ of discrete-valued observations is generated according to some unknown probabilistic law (measure) $\mu$. After observing each outcome, it is required to give the conditional probabilities of the next observation. The measure $\mu$ belongs to an arbitrary but known class $C$ of stochastic process measures. We are interested in predictors $\rho$ whose conditional probabilities converge (in some sense) to the "true" $\mu$-conditional probabilities if any $\mu\in C$ is chosen to generate the sequence. The contribution of this work is in characterizing the families $C$ for which such predictors exist, and in providing a specific and simple form in which to look for a solution. We show that if any predictor works, then there exists a Bayesian predictor, whose prior is discrete, and which works too. We also find several sufficient and necessary conditions for the existence of a predictor, in terms of topological characterizations of the family $C$, as well as in terms of local behaviour of the measures in $C$, which in some cases lead to procedures for constructing such predictors. It should be emphasized that the framework is completely general: the stochastic processes considered are not required to be i.i.d., stationary, or to belong to any parametric or countable family.


Elkan's k-Means for Graphs

arXiv.org Artificial Intelligence

This paper extends k-means algorithms from the Euclidean domain to the domain of graphs. To recompute the centroids, we apply subgradient methods for solving the optimization-based formulation of the sample mean of graphs. To accelerate the k-means algorithm for graphs without trading computational time against solution quality, we avoid unnecessary graph distance calculations by exploiting the triangle inequality of the underlying distance metric following Elkan's k-means algorithm proposed in \cite{Elkan03}. In experiments we show that the accelerated k-means algorithm are faster than the standard k-means algorithm for graphs provided there is a cluster structure in the data.


A Necessary and Sufficient Condition for Graph Matching Being Equivalent to the Maximum Weight Clique Problem

arXiv.org Artificial Intelligence

This paper formulates a necessary and sufficient condition for a generic graph matching problem to be equivalent to the maximum vertex and edge weight clique problem in a derived association graph. The consequences of this results are threefold: first, the condition is general enough to cover a broad range of practical graph matching problems; second, a proof to establish equivalence between graph matching and clique search reduces to showing that a given graph matching problem satisfies the proposed condition; and third, the result sets the scene for generic continuous solutions for a broad range of graph matching problems. To illustrate the mathematical framework, we apply it to a number of graph matching problems, including the problem of determining the graph edit distance.