Plotting

 Country


The Parameter-Less Self-Organizing Map algorithm

arXiv.org Artificial Intelligence

The Parameter-Less Self-Organizing Map (PLSOM) is a new neural network algorithm based on the Self-Organizing Map (SOM). It eliminates the need for a learning rate and annealing schemes for learning rate and neighbourhood size. We discuss the relative performance of the PLSOM and the SOM and demonstrate some tasks in which the SOM fails but the PLSOM performs satisfactory. Finally we discuss some example applications of the PLSOM and present a proof of ordering under certain limited conditions.


A Note on Ontology and Ordinary Language

arXiv.org Artificial Intelligence

We argue for a compositional semantics grounded in a strongly typed ontology that reflects our commonsense view of the world and the way we talk about it. Assuming such a structure we show that the semantics of various natural language phenomena may become nearly trivial.


Soft constraint abstraction based on semiring homomorphism

arXiv.org Artificial Intelligence

The semiring-based constraint satisfaction problems (semiring CSPs), proposed by Bistarelli, Montanari and Rossi \cite{BMR97}, is a very general framework of soft constraints. In this paper we propose an abstraction scheme for soft constraints that uses semiring homomorphism. To find optimal solutions of the concrete problem, the idea is, first working in the abstract problem and finding its optimal solutions, then using them to solve the concrete problem. In particular, we show that a mapping preserves optimal solutions if and only if it is an order-reflecting semiring homomorphism. Moreover, for a semiring homomorphism $\alpha$ and a problem $P$ over $S$, if $t$ is optimal in $\alpha(P)$, then there is an optimal solution $\bar{t}$ of $P$ such that $\bar{t}$ has the same value as $t$ in $\alpha(P)$.


Support vector machine for functional data classification

arXiv.org Machine Learning

In many applications, input data are sampled functions taking their values in infinite dimensional spaces rather than standard vectors. This fact has complex consequences on data analysis algorithms that motivate modifications of them. In fact most of the traditional data analysis tools for regression, classification and clustering have been adapted to functional inputs under the general name of functional Data Analysis (FDA). In this paper, we investigate the use of Support Vector Machines (SVMs) for functional data analysis and we focus on the problem of curves discrimination. SVMs are large margin classifier tools based on implicit non linear mappings of the considered data into high dimensional spaces thanks to kernels. We show how to define simple kernels that take into account the unctional nature of the data and lead to consistent classification. Experiments conducted on real world data emphasize the benefit of taking into account some functional aspects of the problems.


Fault Classification in Cylinders Using Multilayer Perceptrons, Support Vector Machines and Guassian Mixture Models

arXiv.org Artificial Intelligence

Gaussian mixture models (GMM) and support vector machines (SVM) are introduced to classify faults in a population of cylindrical shells. The proposed procedures are tested on a population of 20 cylindrical shells and their performance is compared to the procedure, which uses multi-layer perceptrons (MLP). The modal properties extracted from vibration data are used to train the GMM, SVM and MLP. It is observed that the GMM produces 98%, SVM produces 94% classification accuracy while the MLP produces 88% classification rates.


Ensemble Learning for Free with Evolutionary Algorithms ?

arXiv.org Artificial Intelligence

Evolutionary Learning proceeds by evolving a population of classifiers, from which it generally returns (with some notable exceptions) the single best-of-run classifier as final result. In the meanwhile, Ensemble Learning, one of the most efficient approaches in supervised Machine Learning for the last decade, proceeds by building a population of diverse classifiers. Ensemble Learning with Evolutionary Computation thus receives increasing attention. The Evolutionary Ensemble Learning (EEL) approach presented in this paper features two contributions. First, a new fitness function, inspired by co-evolution and enforcing the classifier diversity, is presented. Further, a new selection criterion based on the classification margin is proposed. This criterion is used to extract the classifier ensemble from the final population only (Off-line) or incrementally along evolution (On-line). Experiments on a set of benchmark problems show that Off-line outperforms single-hypothesis evolutionary learning and state-of-art Boosting and generates smaller classifier ensembles.


An Adaptive Strategy for the Classification of G-Protein Coupled Receptors

arXiv.org Artificial Intelligence

One of the major problems in computational biology is the inability of existing classification models to incorporate expanding and new domain knowledge. This problem of static classification models is addressed in this paper by the introduction of incremental learning for problems in bioinformatics. Many machine learning tools have been applied to this problem using static machine learning structures such as neural networks or support vector machines that are unable to accommodate new information into their existing models. We utilize the fuzzy ARTMAP as an alternate machine learning system that has the ability of incrementally learning new data as it becomes available. The fuzzy ARTMAP is found to be comparable to many of the widespread machine learning systems. The use of an evolutionary strategy in the selection and combination of individual classifiers into an ensemble system, coupled with the incremental learning ability of the fuzzy ARTMAP is proven to be suitable as a pattern classifier. The algorithm presented is tested using data from the G-Coupled Protein Receptors Database and shows good accuracy of 83%. The system presented is also generally applicable, and can be used in problems in genomics and proteomics.


Bayesian approach to rough set

arXiv.org Artificial Intelligence

This paper proposes an approach to training rough set models using Bayesian framework trained using Markov Chain Monte Carlo (MCMC) method. The prior probabilities are constructed from the prior knowledge that good rough set models have fewer rules. Markov Chain Monte Carlo sampling is conducted through sampling in the rough set granule space and Metropolis algorithm is used as an acceptance criteria. The proposed method is tested to estimate the risk of HIV given demographic data. The results obtained shows that the proposed approach is able to achieve an average accuracy of 58% with the accuracy varying up to 66%. In addition the Bayesian rough set give the probabilities of the estimated HIV status as well as the linguistic rules describing how the demographic parameters drive the risk of HIV.


Direct Optimization of Ranking Measures

arXiv.org Artificial Intelligence

Web page ranking and collaborative filtering require the optimization of sophisticated performance measures. Current Support Vector approaches are unable to optimize them directly and focus on pairwise comparisons instead. We present a new approach which allows direct optimization of the relevant loss functions. This is achieved via structured estimation in Hilbert spaces. It is most related to Max-Margin-Markov networks optimization of multivariate performance measures. Key to our approach is that during training the ranking problem can be viewed as a linear assignment problem, which can be solved by the Hungarian Marriage algorithm. At test time, a sort operation is sufficient, as our algorithm assigns a relevance score to every (document, query) pair. Experiments show that the our algorithm is fast and that it works very well.


Experimenting with recursive queries in database and logic programming systems

arXiv.org Artificial Intelligence

This paper considers the problem of reasoning on massive amounts of (possibly distributed) data. Presently, existing proposals show some limitations: {\em (i)} the quantity of data that can be handled contemporarily is limited, due to the fact that reasoning is generally carried out in main-memory; {\em (ii)} the interaction with external (and independent) DBMSs is not trivial and, in several cases, not allowed at all; {\em (iii)} the efficiency of present implementations is still not sufficient for their utilization in complex reasoning tasks involving massive amounts of data. This paper provides a contribution in this setting; it presents a new system, called DLV$^{DB}$, which aims to solve these problems. Moreover, the paper reports the results of a thorough experimental analysis we have carried out for comparing our system with several state-of-the-art systems (both logic and databases) on some classical deductive problems; the other tested systems are: LDL++, XSB, Smodels and three top-level commercial DBMSs. DLV$^{DB}$ significantly outperforms even the commercial Database Systems on recursive queries. To appear in Theory and Practice of Logic Programming (TPLP)