Not enough data to create a plot.
Try a different view from the menu above.
Country
Subject independent EEG-based BCI decoding
Fazli, Siamac, Grozea, Cristian, Danoczy, Marton, Blankertz, Benjamin, Popescu, Florin, Müller, Klaus-Robert
In the quest to make Brain Computer Interfacing (BCI) more usable, dry electrodes have emerged that get rid of the initial 30 minutes required for placing an electrode cap. Another time consuming step is the required individualized adaptation to the BCI user, which involves another 30 minutes calibration for assessing a subjects brain signature. In this paper we aim to also remove this calibration proceedure from BCI setup time by means of machine learning. In particular, we harvest a large database of EEG BCI motor imagination recordings (83 subjects) for constructing a library of subject-specific spatio-temporal filters and derive a subject independent BCI classifier. Our offline results indicate that BCI-na\{i}ve users could start real-time BCI use with no prior calibration at only a very moderate performance loss."
Effects of Stimulus Type and of Error-Correcting Code Design on BCI Speller Performance
Hill, Jeremy, Farquhar, Jason, Martens, Suzanna, Biessmann, Felix, Schölkopf, Bernhard
From an information-theoretic perspective, a noisy transmission system such as a visual Brain-Computer Interface (BCI) speller could benefit from the use of error-correcting codes. However, optimizing the code solely according to the maximal minimum-Hamming-distance criterion tends to lead to an overall increase in target frequency of target stimuli, and hence a significantly reduced average target-to-target interval (TTI), leading to difficulties in classifying the individual event-related potentials (ERPs) due to overlap and refractory effects. Clearly any change to the stimulus setup must also respect the possible psychophysiological consequences. Here we report new EEG data from experiments in which we explore stimulus types and codebooks in a within-subject design, finding an interaction between the two factors. Our data demonstrate that the traditional, row-column code has particular spatial properties that lead to better performance than one would expect from its TTIs and Hamming-distances alone, but nonetheless error-correcting codes can improve performance provided the right stimulus type is used.
Scalable Algorithms for String Kernels with Inexact Matching
Kuksa, Pavel P., Huang, Pai-hsi, Pavlovic, Vladimir
We present a new family of linear time algorithms based on sufficient statistics for string comparison with mismatches under the string kernels framework. Our algorithms improve theoretical complexity bounds of existing approaches while scaling well with respect to the sequence alphabet size, the number of allowed mismatches and the size of the dataset. In particular, on large alphabets with loose mismatch constraints our algorithms are several orders of magnitude faster than the existing algorithms for string comparison under the mismatch similarity measure. We evaluate our algorithms on synthetic data and real applications in music genre classification, protein remote homology detection and protein fold prediction. The scalability of the algorithms allows us to consider complex sequence transformations, modeled using longer string features and larger numbers of mismatches, leading to a state-of-the-art performance with significantly reduced running times.
Efficient Learning using Forward-Backward Splitting
We describe, analyze, and experiment with a new framework for empirical loss minimization with regularization. Our algorithmic framework alternates between two phases. On each iteration we first perform an {\em unconstrained} gradient descent step. We then cast and solve an instantaneous optimization problem that trades off minimization of a regularization term while keeping close proximity to the result of the first phase. This yields a simple yet effective algorithm for both batch penalized risk minimization and online learning. Furthermore, the two phase approach enables sparse solutions when used in conjunction with regularization functions that promote sparsity, such as $\ell_1$. We derive concrete and very simple algorithms for minimization of loss functions with $\ell_1$, $\ell_2$, $\ell_2^2$, and $\ell_\infty$ regularization. We also show how to construct efficient algorithms for mixed-norm $\ell_1/\ell_q$ regularization. We further extend the algorithms and give efficient implementations for very high-dimensional data with sparsity. We demonstrate the potential of the proposed framework in experiments with synthetic and natural datasets.
Noise Characterization, Modeling, and Reduction for In Vivo Neural Recording
Yang, Zhi, Zhao, Qi, Keefer, Edward, Liu, Wentai
Studying signal and noise properties of recorded neural data is critical in developing more efficient algorithms to recover the encoded information. Important issues exist in this research including the variant spectrum spans of neural spikes that make it difficult to choose a global optimal bandpass filter. Also, multiple sources produce aggregated noise that deviates from the conventional white Gaussian noise. In this work, the spectrum variability of spikes is addressed, based on which the concept of adaptive bandpass filter that fits the spectrum of individual spikes is proposed. Multiple noise sources have been studied through analytical models as well as empirical measurements. The dominant noise source is identified as neuron noise followed by interface noise of the electrode. This suggests that major efforts to reduce noise from electronics are not well spent. The measured noise from in vivo experiments shows a family of 1/f^{x} (x=1.5\pm 0.5) spectrum that can be reduced using noise shaping techniques. In summary, the methods of adaptive bandpass filtering and noise shaping together result in several dB signal-to-noise ratio (SNR) enhancement.
A Generalized Natural Actor-Critic Algorithm
Morimura, Tetsuro, Uchibe, Eiji, Yoshimoto, Junichiro, Doya, Kenji
Policy gradient Reinforcement Learning (RL) algorithms have received substantial attention,seeking stochastic policies that maximize the average (or discounted cumulative) reward. In addition, extensions based on the concept of the Natural Gradient (NG) show promising learning efficiency because these regard metrics for the task. Though there are two candidate metrics, Kakade's Fisher Information Matrix (FIM) for the policy (action) distribution and Morimura's FIM for the stateaction jointdistribution, but all RL algorithms with NG have followed Kakade's approach. In this paper, we describe a generalized Natural Gradient (gNG) that linearly interpolates the two FIMs and propose an efficient implementation for the gNG learning based on a theory of the estimating function, the generalized Natural Actor-Critic(gNAC) algorithm. The gNAC algorithm involves a near optimal auxiliary function to reduce the variance of the gNG estimates. Interestingly, the gNAC can be regarded as a natural extension of the current state-of-the-art NAC algorithm [1], as long as the interpolating parameter is appropriately selected. Numerical experimentsshowed that the proposed gNAC algorithm can estimate gNG efficiently and outperformed the NAC algorithm.
Phase transitions for high-dimensional joint support recovery
Negahban, Sahand, Wainwright, Martin J.
We consider the following instance of transfer learning: given a pair of regression problems, suppose that the regression coefficients share a partially common support, parameterized by the overlap fraction $\overlap$ between the two supports. This set-up suggests the use of $1, \infty$-regularized linear regression for recovering the support sets of both regression vectors. Our main contribution is to provide a sharp characterization of the sample complexity of this $1,\infty$ relaxation, exactly pinning down the minimal sample size $n$ required for joint support recovery as a function of the model dimension $\pdim$, support size $\spindex$ and overlap $\overlap \in [0,1]$. For measurement matrices drawn from standard Gaussian ensembles, we prove that the joint $1,\infty$-regularized method undergoes a phase transition characterized by order parameter $\orpar(\numobs, \pdim, \spindex, \overlap) = \numobs{(4 - 3 \overlap) s \log(p-(2-\overlap)s)}$. More precisely, the probability of successfully recovering both supports converges to $1$ for scalings such that $\orpar > 1$, and converges to $0$ to scalings for which $\orpar < 1$. An implication of this threshold is that use of $1, \infty$-regularization leads to gains in sample complexity if the overlap parameter is large enough ($\overlap > 2/3$), but performs worse than a naive approach if $\overlap < 2/3$. We illustrate the close agreement between these theoretical predictions, and the actual behavior in simulations. Thus, our results illustrate both the benefits and dangers associated with block-$1,\infty$ regularization in high-dimensional inference.
Modeling human function learning with Gaussian processes
Griffiths, Thomas L., Lucas, Chris, Williams, Joseph, Kalish, Michael L.
Accounts of how people learn functional relationships between continuous variables have tended to focus on two possibilities: that people are estimating explicit functions, or that they are simply performing associative learning supported by similarity. We provide a rational analysis of function learning, drawing on work on regression in machine learning and statistics. Using the equivalence of Bayesian linear regression and Gaussian processes, we show that learning explicit rules and using similarity can be seen as two views of one solution to this problem. We use this insight to define a Gaussian process model of human function learning that combines the strengths of both approaches.
A ``Shape Aware'' Model for semi-supervised Learning of Objects and its Context
Gupta, Abhinav, Shi, Jianbo, Davis, Larry S.
Integrating semantic and syntactic analysis is essential for document analysis. Using an analogous reasoning, we present an approach that combines bag-of-words and spatial models to perform semantic and syntactic analysis for recognition of an object based on its internal appearance and its context. We argue that while object recognition requires modeling relative spatial locations of image features within the object, a bag-of-word is sufficient for representing context. Learning such a model from weakly labeled data involves labeling of features into two classes: foreground(object) or ''informative'' background(context). labeling. We present a ''shape-aware'' model which utilizes contour information for efficient and accurate labeling of features in the image. Our approach iterates between an MCMC-based labeling and contour based labeling of features to integrate co-occurrence of features and shape similarity.
Kernel Methods for Deep Learning
Cho, Youngmin, Saul, Lawrence K.
We introduce a new family of positive-definite kernel functions that mimic the computation in large, multilayer neural nets. These kernel functions can be used in shallow architectures, such as support vector machines (SVMs), or in deep kernel-based architectures that we call multilayer kernel machines (MKMs). We evaluate SVMs and MKMs with these kernel functions on problems designed to illustrate the advantages of deep architectures. On several problems, we obtain better results than previous, leading benchmarks from both SVMs with Gaussian kernels as well as deep belief nets.