Plotting

 Country


Separating populations with wide data: A spectral analysis

arXiv.org Machine Learning

In this paper, we consider the problem of partitioning a small data sample drawn from a mixture of $k$ product distributions. We are interested in the case that individual features are of low average quality $\gamma$, and we want to use as few of them as possible to correctly partition the sample. We analyze a spectral technique that is able to approximately optimize the total data size--the product of number of data points $n$ and the number of features $K$--needed to correctly perform this partitioning as a function of $1/\gamma$ for $K>n$. Our goal is motivated by an application in clustering individuals according to their population of origin using markers, when the divergence between any two of the populations is small.


On Kernelization of Supervised Mahalanobis Distance Learners

arXiv.org Artificial Intelligence

This paper focuses on the problem of kernelizing an existing supervised Mahalanobis distance learner. The following features are included in the paper. Firstly, three popular learners, namely, "neighborhood component analysis", "large margin nearest neighbors" and "discriminant neighborhood embedding", which do not have kernel versions are kernelized in order to improve their classification performances. Secondly, an alternative kernelization framework called "KPCA trick" is presented. Implementing a learner in the new framework gains several advantages over the standard framework, e.g. no mathematical formulas and no reprogramming are required for a kernel implementation, the framework avoids troublesome problems such as singularity, etc. Thirdly, while the truths of representer theorems are just assumptions in previous papers related to ours, here, representer theorems are formally proven. The proofs validate both the kernel trick and the KPCA trick in the context of Mahalanobis distance learning. Fourthly, unlike previous works which always apply brute force methods to select a kernel, we investigate two approaches which can be efficiently adopted to construct an appropriate kernel for a given dataset. Finally, numerical results on various real-world datasets are presented.


A Knowledge Discovery Framework for Learning Task Models from User Interactions in Intelligent Tutoring Systems

arXiv.org Artificial Intelligence

Domain experts should provide relevant domain knowledge to an Intelligent Tutoring System (ITS) so that it can guide a learner during problemsolving learning activities. However, for many ill-defined domains, the domain knowledge is hard to define explicitly. In previous works, we showed how sequential pattern mining can be used to extract a partial problem space from logged user interactions, and how it can support tutoring services during problem-solving exercises. This article describes an extension of this approach to extract a problem space that is richer and more adapted for supporting tutoring services. We combined sequential pattern mining with (1) dimensional pattern mining (2) time intervals, (3) the automatic clustering of valued actions and (4) closed sequences mining. Some tutoring services have been implemented and an experiment has been conducted in a tutoring system.


Geospatial semantics: beyond ontologies, towards an enactive approach

arXiv.org Artificial Intelligence

Current approaches to semantics in the geospatial domain are mainly based on ontologies, but ontologies, since continue to build entirely on the symbolic methodology, suffers from the classical problems, e.g. the symbol grounding problem, affecting representational theories. We claim for an enactive approach to semantics, where meaning is considered to be an emergent feature arising context-dependently in action. Since representational theories are unable to deal with context, a new formalism is required toward a contextual theory of concepts. SCOP is considered a promising formalism in this sense and is briefly described.


Mining for adverse drug events with formal concept analysis

arXiv.org Artificial Intelligence

The pharmacovigilance databases consist of several case reports involving drugs and adverse events (AEs). Some methods are applied consistently to highlight all signals, i.e. all statistically significant associations between a drug and an AE. These methods are appropriate for verification of more complex relationships involving one or several drug(s) and AE(s) (e.g; syndromes or interactions) but do not address the identification of them. We propose a method for the extraction of these relationships based on Formal Concept Analysis (FCA) associated with disproportionality measures. This method identifies all sets of drugs and AEs which are potential signals, syndromes or interactions. Compared to a previous experience of disproportionality analysis without FCA, the addition of FCA was more efficient for identifying false positives related to concomitant drugs.


Resource Adaptive Agents in Interactive Theorem Proving

arXiv.org Artificial Intelligence

We introduce a resource adaptive agent mechanism which supports the user in interactive theorem proving. The mechanism uses a two layered architecture of agent societies to suggest appropriate commands together with possible command argument instantiations. Experiments with this approach show that its effectiveness can be further improved by introducing a resource concept. In this paper we provide an abstract view on the overall mechanism, motivate the necessity of an appropriate resource concept and discuss its realization within the agent architecture.


Deceptiveness and Neutrality - the ND family of fitness landscapes

arXiv.org Artificial Intelligence

When a considerable number of mutations have no effects on fitness values, the fitness landscape is said neutral. In order to study the interplay between neutrality, which exists in many real-world applications, and performances of metaheuristics, it is useful to design landscapes which make it possible to tune precisely neutral degree distribution. Even though many neutral landscape models have already been designed, none of them are general enough to create landscapes with specific neutral degree distributions. We propose three steps to design such landscapes: first using an algorithm we construct a landscape whose distribution roughly fits the target one, then we use a simulated annealing heuristic to bring closer the two distributions and finally we affect fitness values to each neutral network. Then using this new family of fitness landscapes we are able to highlight the interplay between deceptiveness and neutrality.


Learning Low-Density Separators

arXiv.org Artificial Intelligence

We define a novel, basic, unsupervised learning problem - learning the lowest density homogeneous hyperplane separator of an unknown probability distribution. This task is relevant to several problems in machine learning, such as semi-supervised learning and clustering stability. We investigate the question of existence of a universally consistent algorithm for this problem. We propose two natural learning paradigms and prove that, on input unlabeled random samples generated by any member of a rich family of distributions, they are guaranteed to converge to the optimal separator for that distribution. We complement this result by showing that no learning algorithm for our task can achieve uniform learning rates (that are independent of the data generating distribution).


Model-Consistent Sparse Estimation through the Bootstrap

arXiv.org Machine Learning

We consider the least-square linear regression problem with regularization by the $\ell^1$-norm, a problem usually referred to as the Lasso. In this paper, we first present a detailed asymptotic analysis of model consistency of the Lasso in low-dimensional settings. For various decays of the regularization parameter, we compute asymptotic equivalents of the probability of correct model selection. For a specific rate decay, we show that the Lasso selects all the variables that should enter the model with probability tending to one exponentially fast, while it selects all other variables with strictly positive probability. We show that this property implies that if we run the Lasso for several bootstrapped replications of a given sample, then intersecting the supports of the Lasso bootstrap estimates leads to consistent model selection. This novel variable selection procedure, referred to as the Bolasso, is extended to high-dimensional settings by a provably consistent two-step procedure.


On finitely recursive programs

arXiv.org Artificial Intelligence

Disjunctive finitary programs are a class of logic programs admitting function symbols and hence infinite domains. They have very good computational properties, for example ground queries are decidable while in the general case the stable model semantics is highly undecidable. In this paper we prove that a larger class of programs, called finitely recursive programs, preserves most of the good properties of finitary programs under the stable model semantics, namely: (i) finitely recursive programs enjoy a compactness property; (ii) inconsistency checking and skeptical reasoning are semidecidable; (iii) skeptical resolution is complete for normal finitely recursive programs. Moreover, we show how to check inconsistency and answer skeptical queries using finite subsets of the ground program instantiation. We achieve this by extending the splitting sequence theorem by Lifschitz and Turner: We prove that if the input program P is finitely recursive, then the partial stable models determined by any smooth splitting omega-sequence converge to a stable model of P.