Not enough data to create a plot.
Try a different view from the menu above.
Country
Information Fusion in the Immune System
Twycross, Jamie, Aickelin, Uwe
Biologically-inspired methods such as evolutionary algorithms and neural networks are proving useful in the field of information fusion. Artificial Immune Systems (AISs) are a biologically-inspired approach which take inspiration from the biological immune system. Interestingly, recent research has show how AISs which use multi-level information sources as input data can be used to build effective algorithms for real time computer intrusion detection. This research is based on biological information fusion mechanisms used by the human immune system and as such might be of interest to the information fusion community. The aim of this paper is to present a summary of some of the biological information fusion mechanisms seen in the human immune system, and of how these mechanisms have been implemented as AISs
Indexer Based Dynamic Web Services Discovery
Bashir, Saba, Khan, Farhan Hassan, Javed, M. Younus, Khan, Aihab, Khiyal, Malik Sikandar Hayat
Recent advancement in web services plays an important role in business to business and business to consumer interaction. Discovery mechanism is not only used to find a suitable service but also provides collaboration between service providers and consumers by using standard protocols. A static web service discovery mechanism is not only time consuming but requires continuous human interaction. This paper proposed an efficient dynamic web services discovery mechanism that can locate relevant and updated web services from service registries and repositories with timestamp based on indexing value and categorization for faster and efficient discovery of service. The proposed prototype focuses on quality of service issues and introduces concept of local cache, categorization of services, indexing mechanism, CSP (Constraint Satisfaction Problem) solver, aging and usage of translator. Performance of proposed framework is evaluated by implementing the algorithm and correctness of our method is shown. The results of proposed framework shows greater performance and accuracy in dynamic discovery mechanism of web services resolving the existing issues of flexibility, scalability, based on quality of service, and discovers updated and most relevant services with ease of usage.
What does Newcomb's paradox teach us?
Wolpert, David H., Benford, Gregory
In Newcomb's paradox you choose to receive either the contents of a particular closed box, or the contents of both that closed box and another one. Before you choose, a prediction algorithm deduces your choice, and fills the two boxes based on that deduction. Newcomb's paradox is that game theory appears to provide two conflicting recommendations for what choice you should make in this scenario. We analyze Newcomb's paradox using a recent extension of game theory in which the players set conditional probability distributions in a Bayes net. We show that the two game theory recommendations in Newcomb's scenario have different presumptions for what Bayes net relates your choice and the algorithm's prediction. We resolve the paradox by proving that these two Bayes nets are incompatible. We also show that the accuracy of the algorithm's prediction, the focus of much previous work, is irrelevant. In addition we show that Newcomb's scenario only provides a contradiction between game theory's expected utility and dominance principles if one is sloppy in specifying the underlying Bayes net. We also show that Newcomb's paradox is time-reversal invariant; both the paradox and its resolution are unchanged if the algorithm makes its `prediction' after you make your choice rather than before.
Integrating Innate and Adaptive Immunity for Intrusion Detection
Tedesco, Gianni, Twycross, Jamie, Aickelin, Uwe
Network Intrusion Detection Systems (NDIS) monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDS's rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alters, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to an intrusion detection problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.
Automatically Discovering Hidden Transformation Chaining Constraints
Chenouard, Raphael, Jouault, Frรฉdรฉric
Model transformations operate on models conforming to precisely defined metamodels. Consequently, it often seems relatively easy to chain them: the output of a transformation may be given as input to a second one if metamodels match. However, this simple rule has some obvious limitations. For instance, a transformation may only use a subset of a metamodel. Therefore, chaining transformations appropriately requires more information. We present here an approach that automatically discovers more detailed information about actual chaining constraints by statically analyzing transformations. The objective is to provide developers who decide to chain transformations with more data on which to base their choices. This approach has been successfully applied to the case of a library of endogenous transformations. They all have the same source and target metamodel but have some hidden chaining constraints. In such a case, the simple metamodel matching rule given above does not provide any useful information.
Information Fusion for Anomaly Detection with the Dendritic Cell Algorithm
Greensmith, Julie, Aickelin, Uwe, Tedesco, Gianni
Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system, providing the initial detection of pathogenic invaders. Research into this family of cells has revealed that they perform information fusion which directs immune responses. We have derived a Dendritic Cell Algorithm based on the functionality of these cells, by modelling the biological signals and differentiation pathways to build a control mechanism for an artificial immune system. We present algorithmic details in addition to experimental results, when the algorithm was applied to anomaly detection for the detection of port scans. The results show the Dendritic Cell Algorithm is sucessful at detecting port scans.
Universality, Characteristic Kernels and RKHS Embedding of Measures
Sriperumbudur, Bharath K., Fukumizu, Kenji, Lanckriet, Gert R. G.
A Hilbert space embedding for probability measures has recently been proposed, wherein any probability measure is represented as a mean element in a reproducing kernel Hilbert space (RKHS). Such an embedding has found applications in homogeneity testing, independence testing, dimensionality reduction, etc., with the requirement that the reproducing kernel is characteristic, i.e., the embedding is injective. In this paper, we generalize this embedding to finite signed Borel measures, wherein any finite signed Borel measure is represented as a mean element in an RKHS. We show that the proposed embedding is injective if and only if the kernel is universal. This therefore, provides a novel characterization of universal kernels, which are proposed in the context of achieving the Bayes risk by kernel-based classification/regression algorithms. By exploiting this relation between universality and the embedding of finite signed Borel measures into an RKHS, we establish the relation between universal and characteristic kernels.
Supervised Topic Models
Blei, David M., McAuliffe, Jon D.
We introduce supervised latent Dirichlet allocation (sLDA), a statistical model of labelled documents. The model accommodates a variety of response types. We derive an approximate maximum-likelihood procedure for parameter estimation, which relies on variational methods to handle intractable posterior expectations. Prediction problems motivate this research: we use the fitted model to predict response values for new documents. We test sLDA on two real-world problems: movie ratings predicted from reviews, and the political tone of amendments in the U.S. Senate based on the amendment text. We illustrate the benefits of sLDA versus modern regularized regression, as well as versus an unsupervised LDA analysis followed by a separate regression.
A new model for solution of complex distributed constrained problems
Al-Maqtari, Sami, Abdulrab, Habib, Babkin, Eduard
In this paper we describe an original computational model for solving different types of Distributed Constraint Satisfaction Problems (DCSP). The proposed model is called Controller-Agents for Constraints Solving (CACS). This model is intended to be used which is an emerged field from the integration between two paradigms of different nature: Multi-Agent Systems (MAS) and the Constraint Satisfaction Problem paradigm (CSP) where all constraints are treated in central manner as a black-box. This model allows grouping constraints to form a subset that will be treated together as a local problem inside the controller. Using this model allows also handling non-binary constraints easily and directly so that no translating of constraints into binary ones is needed. This paper presents the implementation outlines of a prototype of DCSP solver, its usage methodology and overview of the CACS application for timetabling problems.
Agent Based Approaches to Engineering Autonomous Space Software
Dennis, Louise A., Fisher, Michael, Lincoln, Nicholas, Lisitsa, Alexei, Veres, Sandor M.
Current approaches to the engineering of space software such as satellite control systems are based around the development of feedback controllers using packages such as MatLab's Simulink toolbox. These provide powerful tools for engineering real time systems that adapt to changes in the environment but are limited when the controller itself needs to be adapted. We are investigating ways in which ideas from temporal logics and agent programming can be integrated with the use of such control systems to provide a more powerful layer of autonomous decision making. This paper will discuss our initial approaches to the engineering of such systems.