Not enough data to create a plot.
Try a different view from the menu above.
Country
A Segment-Based Automatic Language Identification System
Muthusamy, Yeshwant K., Cole, Ronald A.
Automatic language identification is the rapid automatic determination of the language being spoken, by any speaker, saying anything. Despite several important applications of automatic language identification, this area has suffered from a lack of basic research and the absence of a standardized, public-domain database of languages. It is well known that languages have characteristic sound patterns. Languages have been described subjectively as "singsong", "rhythmic", "guttural", "nasal" etc. The key to solving the problem of automatic language identification is the detection and exploitation of such differences between languages. We assume that each language in the world has a unique acoustic structure, and that this structure can be defined in terms of phonetic and prosodic features of speech.
A Neural Net Model for Adaptive Control of Saccadic Accuracy by Primate Cerebellum and Brainstem
Dean, Paul, Mayhew, John E. W., Langdon, Pat
Accurate saccades require interaction between brainstem circuitry and the cerebeJJum. A model of this interaction is described, based on Kawato's principle of feedback-error-Iearning. In the model a part of the brainstem (the superior colliculus) acts as a simple feedback controJJer with no knowledge of initial eye position, and provides an error signal for the cerebeJJum to correct for eye-muscle nonIinearities. This teaches the cerebeJJum, modelled as a CMAC, to adjust appropriately the gain on the brainstem burst-generator's internal feedback loop and so alter the size of burst sent to the motoneurons. With direction-only errors the system rapidly learns to make accurate horizontal eye movements from any starting position, and adapts realistically to subsequent simulated eye-muscle weakening or displacement of the saccadic target.
Incrementally Learning Time-varying Half-planes
Kuh, Anthony, Petsche, Thomas, Rivest, Ronald L.
For a dichotomy, concept drift means that the classification function changes over time. We want to extend the theoretical analyses of learning to include time-varying concepts; to explore the behavior of current learning algorithms in the face of concept drift; and to devise tracking algorithms to better handle concept drift. In this paper, we briefly describe our theoretical model and then present the results of simulations *kuh@wiliki.eng.hawaii.edu
Combined Neural Network and Rule-Based Framework for Probabilistic Pattern Recognition and Discovery
Greenspan, Hayit K., Goodman, Rodney, Chellappa, Rama
A combined neural network and rule-based approach is suggested as a general framework for pattern recognition. This approach enables unsupervised and supervised learning, respectively, while providing probability estimates for the output classes. The probability maps are utilized for higher level analysis such as a feedback for smoothing over the output label maps and the identification of unknown patterns (pattern "discovery"). The suggested approach is presented and demonstrated in the texture - analysis task. A correct classification rate in the 90 percentile is achieved for both unstructured and structured natural texture mosaics. The advantages of the probabilistic approach to pattern analysis are demonstrated.
Bayesian Model Comparison and Backprop Nets
The Bayesian model comparison framework is reviewed, and the Bayesian Occam's razor is explained. This framework can be applied to feedforward networks, making possible (1) objective comparisons between solutions using alternative network architectures; (2) objective choice of magnitude and type of weight decay terms; (3) quantified estimates of the error bars on network parameters and on network output. The framework also generates a measure of the effective number of parameters determined by the data. The relationship of Bayesian model comparison to recent work on prediction of generalisation ability (Guyon et al., 1992, Moody, 1992) is discussed.
Learning How to Teach or Selecting Minimal Surface Data
Geiger, Davi, Pereira, Ricardo A. Marques
Learning a map from an input set to an output set is similar to the problem of reconstructing hypersurfaces from sparse data (Poggio and Girosi, 1990). In this framework, we discuss the problem of automatically selecting "minimal" surface data. The objective is to be able to approximately reconstruct the surface from the selected sparse data. We show that this problem is equivalent to the one of compressing information by data removal and the one oflearning how to teach. Our key step is to introduce a process that statistically selects the data according to the model. During the process of data selection (learning how to teach) our system (teacher) is capable of predicting the new surface, the approximated one provided by the selected data.
Linear Operator for Object Recognition
Visual object recognition involves the identification of images of 3-D objects seen from arbitrary viewpoints. We suggest an approach to object recognition in which a view is represented as a collection of points given by their location in the image. An object is modeled by a set of 2-D views together with the correspondence between the views. We show that any novel view of the object can be expressed as a linear combination of the stored views. Consequently, we build a linear operator that distinguishes between views of a specific object and views of other objects.
ANN Based Classification for Heart Defibrillators
Jabri, M., Pickard, S., Leong, P., Chi, Z., Flower, B., Xie, Y.
These devices are implanted and perform three types of actions: l.monitor the heart 2.to pace the heart 3.to apply high energy/high voltage electric shock 1bey sense the electrical activity of the heart through leads attached to the heart tissue. Two types of sensing are commooly used: Single Chamber: Lead attached to the Right Ventricular Apex (RVA) Dual Chamber: An additional lead is attached to the High Right Atrium (HRA). The actions performed by defibrillators are based on the outcome of a classification procedure based on the heart rhythms of different heart diseases (abnormal rhythms or "arrhythmias").