Plotting

 Country


Mean-Field Theory of Meta-Learning

arXiv.org Machine Learning

We discuss here the mean-field theory for a cellular automata model of meta-learning. The meta-learning is the process of combining outcomes of individual learning procedures in order to determine the final decision with higher accuracy than any single learning method. Our method is constructed from an ensemble of interacting, learning agents, that acquire and process incoming information using various types, or different versions of machine learning algorithms. The abstract learning space, where all agents are located, is constructed here using a fully connected model that couples all agents with random strength values. The cellular automata network simulates the higher level integration of information acquired from the independent learning trials. The final classification of incoming input data is therefore defined as the stationary state of the meta-learning system using simple majority rule, yet the minority clusters that share opposite classification outcome can be observed in the system. Therefore, the probability of selecting proper class for a given input data, can be estimated even without the prior knowledge of its affiliation. The fuzzy logic can be easily introduced into the system, even if learning agents are build from simple binary classification machine learning algorithms by calculating the percentage of agreeing agents.


Tracking object's type changes with fuzzy based fusion rule

arXiv.org Artificial Intelligence

In this paper the behavior of three combinational rules for temporal/sequential attribute data fusion for target type estimation are analyzed. The comparative analysis is based on: Dempster's fusion rule proposed in Dempster-Shafer Theory; Proportional Conflict Redistribution rule no. 5 (PCR5), proposed in Dezert-Smarandache Theory and one alternative class fusion rule, connecting the combination rules for information fusion with particular fuzzy operators, focusing on the t-norm based Conjunctive rule as an analog of the ordinary conjunctive rule and t-conorm based Disjunctive rule as an analog of the ordinary disjunctive rule. The way how different t-conorms and t-norms functions within TCN fusion rule influence over target type estimation performance is studied and estimated.


A Local Search Modeling for Constrained Optimum Paths Problems (Extended Abstract)

arXiv.org Artificial Intelligence

Constrained Optimum Path (COP) problems appear in many real-life applications, especially on communication networks. Some of these problems have been considered and solved by specific techniques which are usually difficult to extend. In this paper, we introduce a novel local search modeling for solving some COPs by local search. The modeling features the compositionality, modularity, reuse and strengthens the benefits of Constrained-Based Local Search. We also apply the modeling to the edge-disjoint paths problem (EDP). We show that side constraints can easily be added in the model. Computational results show the significance of the approach.


Toward an automaton Constraint for Local Search

arXiv.org Artificial Intelligence

We explore the idea of using finite automata to implement new constraints for local search (this is already a successful technique in constraint-based global search). We show how it is possible to maintain incrementally the violations of a constraint and its decision variables from an automaton that describes a ground checker for that constraint. We establish the practicality of our approach idea on real-life personnel rostering problems, and show that it is competitive with the approach of [Pralong, 2007].


On Improving Local Search for Unsatisfiability

arXiv.org Artificial Intelligence

Stochastic local search (SLS) has been an active field of research in the last few years, with new techniques and procedures being developed at an astonishing rate. SLS has been traditionally associated with satisfiability solving, that is, finding a solution for a given problem instance, as its intrinsic nature does not address unsatisfiable problems. Unsatisfiable instances were therefore commonly solved using backtrack search solvers. For this reason, in the late 90s Selman, Kautz and McAllester proposed a challenge to use local search instead to prove unsatisfiability. More recently, two SLS solvers - Ranger and Gunsat - have been developed, which are able to prove unsatisfiability albeit being SLS solvers. In this paper, we first compare Ranger with Gunsat and then propose to improve Ranger performance using some of Gunsat's techniques, namely unit propagation look-ahead and extended resolution.


Parallel local search for solving Constraint Problems on the Cell Broadband Engine (Preliminary Results)

arXiv.org Artificial Intelligence

We explore the use of the Cell Broadband Engine (Cell/BE for short) for combinatorial optimization applications: we present a parallel version of a constraint-based local search algorithm that has been implemented on a multiprocessor BladeCenter machine with twin Cell/BE processors (total of 16 SPUs per blade). This algorithm was chosen because it fits very well the Cell/BE architecture and requires neither shared memory nor communication between processors, while retaining a compact memory footprint. We study the performance on several large optimization benchmarks and show that this achieves mostly linear time speedups, even sometimes super-linear. This is possible because the parallel implementation might explore simultaneously different parts of the search space and therefore converge faster towards the best sub-space and thus towards a solution. Besides getting speedups, the resulting times exhibit a much smaller variance, which benefits applications where a timely reply is critical.


Sonet Network Design Problems

arXiv.org Artificial Intelligence

This paper presents a new method and a constraint-based objective function to solve two problems related to the design of optical telecommunication networks, namely the Synchronous Optical Network Ring Assignment Problem (SRAP) and the Intra-ring Synchronous Optical Network Design Problem (IDP). These network topology problems can be represented as a graph partitioning with capacity constraints as shown in previous works. We present here a new objective function and a new local search algorithm to solve these problems. Experiments conducted in Comet allow us to compare our method to previous ones and show that we obtain better results.


Dynamic Demand-Capacity Balancing for Air Traffic Management Using Constraint-Based Local Search: First Results

arXiv.org Artificial Intelligence

Using constraint-based local search, we effectively model and efficiently solve the problem of balancing the traffic demands on portions of the European airspace while ensuring that their capacity constraints are satisfied. The traffic demand of a portion of airspace is the hourly number of flights planned to enter it, and its capacity is the upper bound on this number under which air-traffic controllers can work. Currently, the only form of demand-capacity balancing we allow is ground holding, that is the changing of the take-off times of not yet airborne flights. Experiments with projected European flight plans of the year 2030 show that already this first form of demand-capacity balancing is feasible without incurring too much total delay and that it can lead to a significantly better demand-capacity balance.


A multiagent urban traffic simulation. Part II: dealing with the extraordinary

arXiv.org Artificial Intelligence

In Probabilistic Risk Management, risk is characterized by two quantities: the magnitude (or severity) of the adverse consequences that can potentially result from the given activity or action, and by the likelihood of occurrence of the given adverse consequences. But a risk seldom exists in isolation: chain of consequences must be examined, as the outcome of one risk can increase the likelihood of other risks. Systemic theory must complement classic PRM. Indeed these chains are composed of many different elements, all of which may have a critical importance at many different levels. Furthermore, when urban catastrophes are envisioned, space and time constraints are key determinants of the workings and dynamics of these chains of catastrophes: models must include a correct spatial topology of the studied risk. Finally, literature insists on the importance small events can have on the risk on a greater scale: urban risks management models belong to self-organized criticality theory. We chose multiagent systems to incorporate this property in our model: the behavior of an agent can transform the dynamics of important groups of them.


BRAINSTORMING: Consensus Learning in Practice

arXiv.org Machine Learning

We present here an introduction to Brainstorming approach, that was recently proposed as a consensus meta-learning technique, and used in several practical applications in bioinformatics and chemoinformatics. The consensus learning denotes heterogeneous theoretical classification method, where one trains an ensemble of machine learning algorithms using different types of input training data representations. In the second step all solutions are gathered and the consensus is build between them. Therefore no early solution, given even by a generally low performing algorithm, is not discarder until the late phase of prediction, when the final conclusion is drawn by comparing different machine learning models. This final phase, i.e. consensus learning, is trying to balance the generality of solution and the overall performance of trained model.