Plotting

 Country


Discrete Temporal Models of Social Networks

arXiv.org Machine Learning

We propose a family of statistical models for social network evolution over time, which represents an extension of Exponential Random Graph Models (ERGMs). Many of the methods for ERGMs are readily adapted for these models, including maximum likelihood estimation algorithms. We discuss models of this type and their properties, and give examples, as well as a demonstration of their use for hypothesis testing and classification. We believe our temporal ERG models represent a useful new framework for modeling time-evolving social networks, and rewiring networks from other domains such as gene regulation circuitry, and communication networks.


Node discovery problem for a social network

arXiv.org Artificial Intelligence

Methods to solve a node discovery problem for a social network are presented. Covert nodes refer to the nodes which are not observable directly. They transmit the influence and affect the resulting collaborative activities among the persons in a social network, but do not appear in the surveillance logs which record the participants of the collaborative activities. Discovering the covert nodes is identifying the suspicious logs where the covert nodes would appear if the covert nodes became overt. The performance of the methods is demonstrated with a test dataset generated from computationally synthesized networks and a real organization.


Support Vector Machine Classification with Indefinite Kernels

arXiv.org Artificial Intelligence

We propose a method for support vector machine classification using indefinite kernels. Instead of directly minimizing or stabilizing a nonconvex loss function, our algorithm simultaneously computes support vectors and a proxy kernel matrix used in forming the loss. This can be interpreted as a penalized kernel learning problem where indefinite kernel matrices are treated as a noisy observations of a true Mercer kernel. Our formulation keeps the problem convex and relatively large problems can be solved efficiently using the projected gradient or analytic center cutting plane methods. We compare the performance of our technique with other methods on several classic data sets.


Streamed Learning: One-Pass SVMs

arXiv.org Machine Learning

We present a streaming model for large-scale classification (in the context of $\ell_2$-SVM) by leveraging connections between learning and computational geometry. The streaming model imposes the constraint that only a single pass over the data is allowed. The $\ell_2$-SVM is known to have an equivalent formulation in terms of the minimum enclosing ball (MEB) problem, and an efficient algorithm based on the idea of \emph{core sets} exists (Core Vector Machine, CVM). CVM learns a $(1+\varepsilon)$-approximate MEB for a set of points and yields an approximate solution to corresponding SVM instance. However CVM works in batch mode requiring multiple passes over the data. This paper presents a single-pass SVM which is based on the minimum enclosing ball of streaming data. We show that the MEB updates for the streaming case can be easily adapted to learn the SVM weight vector in a way similar to using online stochastic gradient updates. Our algorithm performs polylogarithmic computation at each example, and requires very small and constant storage. Experimental results show that, even in such restrictive settings, we can learn efficiently in just one pass and get accuracies comparable to other state-of-the-art SVM solvers (batch and online). We also give an analysis of the algorithm, and discuss some open issues and possible extensions.


Regret Bounds for Opportunistic Channel Access

arXiv.org Artificial Intelligence

We consider the task of opportunistic channel access in a primary system composed of independent Gilbert-Elliot channels where the secondary (or opportunistic) user does not dispose of a priori information regarding the statistical characteristics of the system. It is shown that this problem may be cast into the framework of model-based learning in a specific class of Partially Observed Markov Decision Processes (POMDPs) for which we introduce an algorithm aimed at striking an optimal tradeoff between the exploration (or estimation) and exploitation requirements. We provide finite horizon regret bounds for this algorithm as well as a numerical evaluation of its performance in the single channel model as well as in the case of stochastically identical channels.


Knowledge Discovery of Hydrocyclone s Circuit Based on SONFIS and SORST

arXiv.org Artificial Intelligence

This study describes application of some approximate reasoning methods to analysis of hydrocyclone performance. In this manner, using a combining of Self Organizing Map (SOM), Neuro-Fuzzy Inference System (NFIS)-SONFIS- and Rough Set Theory (RST)-SORST-crisp and fuzzy granules are obtained. Balancing of crisp granules and non-crisp granules can be implemented in close-open iteration. Using different criteria and based on granulation level balance point (interval) or a pseudo-balance point is estimated. Validation of the proposed methods, on the data set of the hydrocyclone is rendered.


A Class of DSm Conditional Rules

arXiv.org Artificial Intelligence

In this paper we introduce two new DSm fusion conditioning rules with example, and as a generalization of them a class of DSm fusion conditioning rules, and then extend them to a class of DSm conditioning rules.


How the initialization affects the stability of the k-means algorithm

arXiv.org Machine Learning

We investigate the role of the initialization for the stability of the k-means clustering algorithm. As opposed to other papers, we consider the actual k-means algorithm and do not ignore its property of getting stuck in local optima. We are interested in the actual clustering, not only in the costs of the solution. We analyze when different initializations lead to the same local optimum, and when they lead to different local optima. This enables us to prove that it is reasonable to select the number of clusters based on stability scores.


A Unified Semi-Supervised Dimensionality Reduction Framework for Manifold Learning

arXiv.org Artificial Intelligence

We present a general framework of semi-supervised dimensionality reduction for manifold learning which naturally generalizes existing supervised and unsupervised learning frameworks which apply the spectral decomposition. Algorithms derived under our framework are able to employ both labeled and unlabeled examples and are able to handle complex problems where data form separate clusters of manifolds. Our framework offers simple views, explains relationships among existing frameworks and provides further extensions which can improve existing algorithms. Furthermore, a new semi-supervised kernelization framework called ``KPCA trick'' is proposed to handle non-linear problems.


Restart Strategy Selection using Machine Learning Techniques

arXiv.org Artificial Intelligence

Restart strategies are an important factor in the performance of conflict-driven Davis Putnam style SAT solvers. Selecting a good restart strategy for a problem instance can enhance the performance of a solver. Inspired by recent success applying machine learning techniques to predict the runtime of SAT solvers, we present a method which uses machine learning to boost solver performance through a smart selection of the restart strategy. Based on easy to compute features, we train both a satisfiability classifier and runtime models. We use these models to choose between restart strategies. We present experimental results comparing this technique with the most commonly used restart strategies. Our results demonstrate that machine learning is effective in improving solver performance.