Plotting

 Country


From RESTful Services to RDF: Connecting the Web and the Semantic Web

arXiv.org Artificial Intelligence

RESTful services on the Web expose information through retrievable resource representations that represent self-describing descriptions of resources, and through the way how these resources are interlinked through the hyperlinks that can be found in those representations. This basic design of RESTful services means that for extracting the most useful information from a service, it is necessary to understand a service's representations, which means both the semantics in terms of describing a resource, and also its semantics in terms of describing its linkage with other resources. Based on the Resource Linking Language (ReLL), this paper describes a framework for how RESTful services can be described, and how these descriptions can then be used to harvest information from these services. Building on this framework, a layered model of RESTful service semantics allows to represent a service's information in RDF/OWL. Because REST is based on the linkage between resources, the same model can be used for aggregating and interlinking multiple services for extracting RDF data from sets of RESTful services.


Embedding Non-Ground Logic Programs into Autoepistemic Logic for Knowledge Base Combination

arXiv.org Artificial Intelligence

In the context of the Semantic Web, several approaches to the combination of ontologies, given in terms of theories of classical first-order logic and rule bases, have been proposed. They either cast rules into classical logic or limit the interaction between rules and ontologies. Autoepistemic logic (AEL) is an attractive formalism which allows to overcome these limitations, by serving as a uniform host language to embed ontologies and nonmonotonic logic programs into it. For the latter, so far only the propositional setting has been considered. In this paper, we present three embeddings of normal and three embeddings of disjunctive non-ground logic programs under the stable model semantics into first-order AEL. While the embeddings all correspond with respect to objective ground atoms, differences arise when considering non-atomic formulas and combinations with first-order theories. We compare the embeddings with respect to stable expansions and autoepistemic consequences, considering the embeddings by themselves, as well as combinations with classical theories. Our results reveal differences and correspondences of the embeddings and provide useful guidance in the choice of a particular embedding for knowledge combination.


Building Computer Network Attacks

arXiv.org Artificial Intelligence

In this work we start walking the path to a new perspective for viewing cyberwarfare scenarios, by introducing conceptual tools (a formal model) to evaluate the costs of an attack, to describe the theater of operations, targets, missions, actions, plans and assets involved in cyberwarfare attacks. We also describe two applications of this model: autonomous planning leading to automated penetration tests, and attack simulations, allowing a system administrator to evaluate the vulnerabilities of his network.


Game Information System

arXiv.org Artificial Intelligence

In this Information system age many organizations consider information system as their weapon to compete or gain competitive advantage or give the best services for non profit organizations. Game Information System as combining Information System and game is breakthrough to achieve organizations' performance. The Game Information System will run the Information System with game and how game can be implemented to run the Information System. Game is not only for fun and entertainment, but will be a challenge to combine fun and entertainment with Information System. The Challenge to run the information system with entertainment, deliver the entertainment with information system all at once. Game information system can be implemented in many sectors as like the information system itself but in difference's view. A view of game which people can joy and happy and do their transaction as a fun things.


Landau Theory of Adaptive Integration in Computational Intelligence

arXiv.org Artificial Intelligence

Computational Intelligence (CI) is a sub-branch of Artificial Intelligence paradigm focusing on the study of adaptive mechanisms to enable or facilitate intelligent behavior in complex and changing environments. There are several paradigms of CI [like artificial neural networks, evolutionary computations, swarm intelligence, artificial immune systems, fuzzy systems and many others], each of these has its origins in biological systems [biological neural systems, natural Darwinian evolution, social behavior, immune system, interactions of organisms with their environment]. Most of those paradigms evolved into separate machine learning (ML) techniques, where probabilistic methods are used complementary with CI techniques in order to effectively combine elements of learning, adaptation, evolution and Fuzzy logic to create heuristic algorithms that are, in some sense, intelligent. The current trend is to develop consensus techniques, since no single machine learning algorithms is superior to others in all possible situations. In order to overcome this problem several meta-approaches were proposed in ML focusing on the integration of results from different methods into single prediction. We discuss here the Landau theory for the nonlinear equation that can describe the adaptive integration of information acquired from an ensemble of independent learning agents. The influence of each individual agent on other learners is described similarly to the social impact theory. The final decision outcome for the consensus system is calculated using majority rule in the stationary limit, yet the minority solutions can survive inside the majority population as the complex intermittent clusters of opposite opinion.


Virtual information system on working area

arXiv.org Artificial Intelligence

In order to get strategic positioning for competition in business organization, the information system must be ahead in this information age where the information as one of the weapons to win the competition and in the right hand the information will become a right bullet. The information system with the information technology support isn't enough if just only on internet or implemented with internet technology. The growth of information technology as tools for helping and making people easy to use must be accompanied by wanting to make fun and happy when they make contact with the information technology itself. Basically human like to play, since childhood human have been playing, free and happy and when human grow up they can't play as much as when human was in their childhood. We have to develop the information system which is not perform information system itself but can help human to explore their natural instinct for playing, making fun and happiness when they interact with the information system. Virtual information system is the way to present playing and having fun atmosphere on working area.


Calibration and Internal no-Regret with Partial Monitoring

arXiv.org Machine Learning

Calibrated strategies can be obtained by performing strategies that have no internal regret in some auxiliary game. Such strategies can be constructed explicitly with the use of Blackwell's approachability theorem, in an other auxiliary game. We establish the converse: a strategy that approaches a convex $B$-set can be derived from the construction of a calibrated strategy. We develop these tools in the framework of a game with partial monitoring, where players do not observe the actions of their opponents but receive random signals, to define a notion of internal regret and construct strategies that have no such regret.


The DCA:SOMe Comparison A comparative study between two biologically-inspired algorithms

arXiv.org Artificial Intelligence

The Dendritic Cell Algorithm (DCA) is an immune-inspired algorithm, developed for the purpose of anomaly detection. The algorithm performs multi-sensor data fusion and correlation which results in a 'context aware' detection system. Previous applications of the DCA have included the detection of potentially malicious port scanning activity, where it has produced high rates of true positives and low rates of false positives. In this work we aim to compare the performance of the DCA and of a Self-Organizing Map (SOM) when applied to the detection of SYN port scans, through experimental analysis. A SOM is an ideal candidate for comparison as it shares similarities with the DCA in terms of the data fusion method employed. It is shown that the results of the two systems are comparable, and both produce false positives for the same processes. This shows that the DCA can produce anomaly detection results to the same standard as an established technique.


ToLeRating UR-STD

arXiv.org Artificial Intelligence

A new emerging paradigm of Uncertain Risk of Suspicion, Threat and Danger, observed across the field of information security, is described. Based on this paradigm a novel approach to anomaly detection is presented. Our approach is based on a simple yet powerful analogy from the innate part of the human immune system, the Toll-Like Receptors. We argue that such receptors incorporated as part of an anomaly detector enhance the detector's ability to distinguish normal and anomalous behaviour. In addition we propose that Toll-Like Receptors enable the classification of detected anomalies based on the types of attacks that perpetrate the anomalous behaviour. Classification of such type is either missing in existing literature or is not fit for the purpose of reducing the burden of an administrator of an intrusion detection system. For our model to work, we propose the creation of a taxonomy of the digital Acytota, based on which our receptors are created.


Towards a Conceptual Framework for Innate Immunity

arXiv.org Artificial Intelligence

Innate immunity now occupies a central role in immunology. However, artificial immune system models have largely been inspired by adaptive not innate immunity. This paper reviews the biological principles and properties of innate immunity and, adopting a conceptual framework, asks how these can be incorporated into artificial models. The aim is to outline a meta-framework for models of innate immunity.