Plotting

 Country


Matrix Completion from Power-Law Distributed Samples

Neural Information Processing Systems

The low-rank matrix completion problem is a fundamental problem with many important applications. Recently, [4],[13] and [5] obtained the first nontrivial theoretical results for the problem assuming that the observed entries are sampled uniformly at random. Unfortunately, most real-world datasets do not satisfy this assumption, but instead exhibit power-law distributed samples. In this paper, we propose a graph theoretic approach to matrix completion that solves the problem for more realistic sampling models. Our method is simpler to analyze than previous methodswith the analysis reducing to computing the threshold for complete cascades in random graphs, a problem of independent interest. By analyzing the graph theoretic problem, we show that our method achieves exact recovery when the observed entries are sampled from the Chung-Lu-Vu model, which can generate power-lawdistributed graphs. We also hypothesize that our algorithm solves the matrix completion problem from an optimal number of entries for the popular preferentialattachment model and provide strong empirical evidence for the claim. Furthermore, our method is easy to implement and is substantially faster than existing methods. We demonstrate the effectiveness of our method on random instanceswhere the low-rank matrix is sampled according to the prevalent random graph models for complex networks and present promising preliminary results on the Netflix challenge dataset.


Non-stationary continuous dynamic Bayesian networks

Neural Information Processing Systems

Dynamic Bayesian networks have been applied widely to reconstruct the structure of regulatory processes from time series data. The standard approach is based on the assumption of a homogeneous Markov chain, which is not valid in many real-world scenarios. Recent research efforts addressing this shortcoming have considered undirected graphs, directed graphs for discretized data, or over-flexible models that lack any information sharing between time series segments. In the present article, we propose a non-stationary dynamic Bayesian network for continuous data, in which parameters are allowed to vary between segments, and in which a common network structure provides essential information sharing across segments. Our model is based on a Bayesian change-point process, and we apply a variant of the allocation sampler of Nobile and Fearnside to infer the number and location of the change-points.


Extended Grassmann Kernels for Subspace-Based Learning

Neural Information Processing Systems

Subspace-based learning problems involve data whose elements are linear subspaces of a vector space. To handle such data structures, Grassmann kernels have been proposed and used previously. In this paper, we analyze the relationship between Grassmann kernels and probabilistic similarity measures. Firstly, we show that the KL distance in the limit yields the Projection kernel on the Grassmann manifold, whereas the Bhattacharyya kernel becomes trivial in the limit and is suboptimal for subspace-based problems. Secondly, based on our analysis of the KL distance, we propose extensions of the Projection kernel which can be extended to the set of affine as well as scaled subspaces. We demonstrate the advantages of these extended kernels for classification and recognition tasks with Support Vector Machines and Kernel Discriminant Analysis using synthetic and real image databases.


Unifying the Sensory and Motor Components of Sensorimotor Adaptation

Neural Information Processing Systems

Adaptation of visually guided reaching movements in novel visuomotor environments (e.g.wearing prism goggles) comprises not only motor adaptation but also substantial sensory adaptation, corresponding to shifts in the perceived spatial location of visual and proprioceptive cues. Previous computational modelsof the sensory component of visuomotor adaptation have assumed that it is driven purely by the discrepancy introduced between visual andproprioceptive estimates of hand position and is independent of any motor component of adaptation. We instead propose a unified model in which sensory and motor adaptation are jointly driven by optimal Bayesian estimation of the sensory and motor contributions to perceived errors. Our model is able to account for patterns of performance errors during visuomotor adaptationas well as the subsequent perceptual aftereffects. This unified model also makes the surprising prediction that force field adaptation willelicit similar perceptual shifts, even though there is never any discrepancy between visual and proprioceptive observations. We confirm this prediction with an experiment.


Shape-Based Object Localization for Descriptive Classification

Neural Information Processing Systems

Discriminative tasks, including object categorization and detection, are central components of high-level computer vision. Sometimes, however, we are interested inmore refined aspects of the object in an image, such as pose or particular regions. In this paper we develop a method (LOOPS) for learning a shape and image feature model that can be trained on a particular object class, and used to outline instances of the class in novel images. Furthermore, while the training data consists of uncorresponded outlines, the resulting LOOPS model contains a set of landmark points that appear consistently across instances, and can be accurately localized in an image. Our model achieves state-of-the-art results in precisely outlining objectsthat exhibit large deformations and articulations in cluttered natural images. These localizations can then be used to address a range of tasks, including descriptive classification, search, and clustering.


The Infinite Partially Observable Markov Decision Process

Neural Information Processing Systems

The Partially Observable Markov Decision Process (POMDP) framework has proven useful in planning domains that require balancing actions that increase an agents knowledge and actions that increase an agents reward. Unfortunately, most POMDPs are complex structures with a large number of parameters. In many realworld problems, both the structure and the parameters are difficult to specify from domain knowledge alone. Recent work in Bayesian reinforcement learning has made headway in learning POMDP models; however, this work has largely focused on learning the parameters of the POMDP model. We define an infinite POMDP (iPOMDP) model that does not require knowledge of the size of the state space; instead, it assumes that the number of visited states will grow as the agent explores its world and explicitly models only visited states. We demonstrate the iPOMDP utility on several standard problems.


On the Efficient Minimization of Classification Calibrated Surrogates

Neural Information Processing Systems

Bartlett et al (2006) recently proved that a ground condition for convex surrogates, classification calibration, ties up the minimization of the surrogates and classification risks, and left as an important problem the algorithmic questions about the minimization of these surrogates. In this paper, we propose an algorithm which provably minimizes any classification calibrated surrogate strictly convex and differentiable --- a set whose losses span the exponential, logistic and squared losses ---, with boosting-type guaranteed convergence rates under a weak learning assumption. A particular subclass of these surrogates, that we call balanced convex surrogates, has a key rationale that ties it to maximum likelihood estimation, zero-sum games and the set of losses that satisfy some of the most common requirements for losses in supervised learning. We report experiments on more than 50 readily available domains of 11 flavors of the algorithm, that shed light on new surrogates, and the potential of data dependent strategies to tune surrogates.


ICA based on a Smooth Estimation of the Differential Entropy

Neural Information Processing Systems

In this paper we introduce the MeanNN approach for estimation of main information theoreticmeasures such as differential entropy, mutual information and divergence. As opposed to other nonparametric approaches the MeanNN results in smooth differentiable functions of the data samples with clear geometrical interpretation. Thenwe apply the proposed estimators to the ICA problem and obtain a smooth expression for the mutual information that can be analytically optimized by gradient descent methods. The improved performance of the proposed ICA algorithm is demonstrated on several test examples in comparison with state-ofthe-art techniques.


Regularized Policy Iteration

Neural Information Processing Systems

In this paper we consider approximate policy-iteration-based reinforcement learning algorithms. In order to implement a flexible function approximation scheme we propose the use of non-parametric methods with regularization, providing a convenient way to control the complexity of the function approximator. We propose two novel regularized policy iteration algorithms by adding L2-regularization to two widely-used policy evaluation methods: Bellman residual minimization (BRM) and least-squares temporal difference learning (LSTD). We derive efficient implementation for our algorithms when the approximate value-functions belong to a reproducing kernel Hilbert space. We also provide finite-sample performance bounds for our algorithms and show that they are able to achieve optimal rates of convergence under the studied conditions.


Bayesian Experimental Design of Magnetic Resonance Imaging Sequences

Neural Information Processing Systems

We show how improved sequences for magnetic resonance imaging can be found through automated optimization of Bayesian design scores. Combining recent advances in approximate Bayesian inference and natural image statistics with high-performance numerical computation, we propose the first scalable Bayesian experimental design framework for this problem of high relevance to clinical and brain research. Our solution requires approximate inference for dense, non-Gaussian models on a scale seldom addressed before. We propose a novel scalable variational inference algorithm, and show how powerful methods of numerical mathematics can be modified to compute primitives in our framework. Our approach is evaluated on a realistic setup with raw data from a 3T MR scanner.