Plotting

 Country


News Recommendation in Forum-Based Social Media

AAAI Conferences

Self-publication of news on Web sites is becoming a common application platform to enable more engaging interaction among users. Discussion in the form of comments following news postings can be effectively facilitated if the service provider can recommend articles based on not only the original news itself but also the thread of changing comments. This turns the traditional news recommendation to a "discussion moderator" that can intelligently assist online forums. In this work, we present a framework to implement such adaptive news recommendation. In addition, to alleviate the problem of recommending essentially identical articles, the relationship (duplication, generalization or specialization) between suggested news articles and the original posting is investigated. Experiments indicate that our proposed solutions provide an enhanced news recommendation service in forum-based social media.


Searching Without a Heuristic: Efficient Use of Abstraction

AAAI Conferences

In problem domains where an informative heuristic evaluation function is not known or not easily computed, abstraction can be used to derive admissible heuristic values. Optimal path lengths in the abstracted problem are consistent heuristic estimates for the original problem. Pattern databases are the traditional method of creating such heuristics, but they exhaustively compute costs for all abstract states and are thus usually appropriate only when all instances share the same single goal state. Hierarchical heuristic search algorithms address these shortcomings by searching for paths in the abstract space on an as-needed basis. However, existing hierarchical algorithms search less efficiently than pattern database constructors: abstract nodes may be expanded many times during the course of a base-level search. We present a novel hierarchical heuristic search algorithm, called Switchback, that uses an alternating direction of search to avoid abstract node re-expansions. This algorithm is simple to implement and demonstrates superior performance to existing hierarchical heuristic search algorithms on several standard benchmarks.


On the Reputation of Agent-Based Web Services

AAAI Conferences

Maintaining a sound reputation mechanism requires a robust control and investigation. In this paper, we propose a game-theoretic analysis of a reputation mechanism that objectively maintains accurate reputation evaluation of selfish agent-based web services. In this framework, web services are ranked using their reputation as a result of provided feedback reflecting consumers' satisfaction about the offered services. However, selfish web services may alter their public reputation level by managing to get fake feedback. In this paper, game-theoretic analysis investigates the payoffs of different situations and elaborates on the facts that discourage web services to act maliciously.



Lazy Theta*: Any-Angle Path Planning and Path Length Analysis in 3D

AAAI Conferences

Grids with blocked and unblocked cells are often used to represent continuous 2D and 3D environments in robotics and video games. The shortest paths formed by the edges of 8-neighbor 2D grids can be up to 8% longer than the shortest paths in the continuous environment. Theta* typically finds much shorter paths than that by propagating information along graph edges (to achieve short runtimes) without constraining paths to be formed by graph edges (to find short "any-angle" paths). We show in this paper that the shortest paths formed by the edges of 26-neighbor 3D grids can be 13% longer than the shortest paths in the continuous environment, which highlights the need for smart path planning algorithms in 3D. Theta* can be applied to 3D grids in a straight-forward manner, but it performs a line-of-sight check for each unexpanded visible neighbor of each expanded vertex and thus it performs many more line-of-sight checks per expanded vertex on a 26-neighbor 3D grid than on an 8-neighbor 2D grid. We therefore introduce Lazy Theta*, a variant of Theta* which uses lazy evaluation to perform only one line-of-sight check per expanded vertex (but with slightly more expanded vertices). We show experimentally that Lazy Theta* finds paths faster than Theta* on 26-neighbor 3D grids, with one order of magnitude fewer line-of-sight checks and without an increase in path length.


Subjective Trust Inference in Composite Services

AAAI Conferences

In Service-Oriented Computing (SOC) environments, the trustworthiness of each service is critical for a service client when selecting one from a large pool of services. The trust value of a service is usually in the range of [0,1] and is evaluated from the ratings given by service clients, which represent the subjective belief of these service clients on the satisfaction of delivered services. So a trust value can be taken as the subjective probability, with which one party believes that another party can perform an action in a certain situation. Hence, subjective probability theory should be adopted in trust evaluation. In addition, in SOC environments, a service usually invokes other services offered by different service providers forming a composite service. Thus, the global trust of a composite service should be evaluated based on complex invocation structures. In this paper, firstly, based on Bayesian inference, we propose a novel method to evaluate the subjective trustworthiness of a service component from a series of ratings given by service clients. Secondly, we interpret the trust dependency caused by service invocations as conditional probability, which is evaluated based on the subjective trust values of service components. Furthermore, we propose a joint subjective probability method to evaluate the subjective global trust of a composite service on the basis of trust dependency. Finally, we introduce the results of our conducted experiments to illustrate the properties of our proposed subjective global trust inference method.


Learning Causal Models of Relational Domains

AAAI Conferences

Methods for discovering causal knowledge from observational data have been a persistent topic of AI research for several decades. Essentially all of this work focuses on knowledge representations for propositional domains. In this paper, we present several key algorithmic and theoretical innovations that extend causal discovery to relational domains. We provide strong evidence that effective learning of causal models is enhanced by relational representations. We present an algorithm, relational PC, that learns causal dependencies in a state-of-the-art relational representation, and we identify the key representational and algorithmic innovations that make the algorithm possible. Finally, we prove the algorithm's theoretical correctness and demonstrate its effectiveness on synthetic and real data sets.


Automated Program Debugging Via Multiple Predicate Switching

AAAI Conferences

In a previous paper, Liu argued for the importance of establishing a precise theoretical foundation for program debugging from first principles. In this paper, we present a first step towards a theoretical exploration of program debugging algorithms. The starting point of our work is the recent debugging approach based on predicate switching. The idea is to switch the outcome of an instance of a predicate to bring the program execution to a successful completion and then identify the fault by examining the switched predicate. However, no theoretical analysis of the approach is available. In this paper, we generalize the above idea, and propose the bounded debugging via multiple predicate switching (BMPS) algorithm, which locates faults through switching the outcomes of instances of multiple predicates to get a successful execution where each loop is executed for a bounded number of times. Clearly, BMPS can be implemented by resorting to a SAT solver. We focus attention on RHS faults, that is, faults that occur in the control predicates and right-hand-sides of assignment statements. We prove that for conditional programs, BMPS is quasi-complete for RHS faults in the sense that some part of any true diagnosis will be returned by BMPS; and for iterative programs, when the bound is sufficiently large, BMPS is also quasi-complete for RHS faults. Initial experimentation with debugging small C programs showed that BMPS can quickly and effectively locate the faults.


Fast, Accurate, and Practical Identity Inference Using TV Remote Controls

AAAI Conferences

Non-invasive identity inference in the home environment is a very challenging problem. A practical solution to the problem could have far reaching implications in many industries, such as home entertainment. In this work, we consider the problem of identity inference using a TV remote control. In particular, we address two challenges that have so far prevented the work of Chang et al. (2009) from being applied in a home entertainment system. First, we show how to learn the patterns of TV remote controls incrementally and online. Second, we generalize our results to partially labeled data. To achieve our goal, we use state-of-the-art methods for max-margin learning and online convex programming. Our solution is efficient, runs in real time, and comes with theoretical guarantees. It performs well in practice and we demonstrate this on 4 datasets of 2 to 4 people.


Intentions in Equilibrium

AAAI Conferences

Intentions have been widely studied in AI, both in the context of decision-making within individual agents and in multi-agent systems. Work on intentions in multi-agent systems has focused on joint intention models, which characterise the mental state of agents with a shared goal engaged in teamwork. In the absence of shared goals, however, intentions play another crucial role in multi-agent activity: they provide a basis around which agents can mutually coordinate activities. Models based on shared goals do not attempt to account for or explain this role of intentions. In this paper, we present a formal model of multi-agent systems in which belief-desire-intention agents choose their intentions taking into account the intentions of others. To understand rational mental states in such a setting, we formally define and investigate notions of multi-agent intention equilibrium, which are related to equilibrium concepts in game theory.