Not enough data to create a plot.
Try a different view from the menu above.
Country
Sparse and Locally Constant Gaussian Graphical Models
Honorio, Jean, Samaras, Dimitris, Paragios, Nikos, Goldstein, Rita, Ortiz, Luis E.
Locality information is crucial in datasets where each variable corresponds to a measurement in a manifold (silhouettes, motion trajectories, 2D and 3D images). Although these datasets are typically under-sampled and high-dimensional, they often need to be represented with low-complexity statistical models, which are comprised of only the important probabilistic dependencies in the datasets. Most methods attempt to reduce model complexity by enforcing structure sparseness. However, sparseness cannot describe inherent regularities in the structure. Hence, in this paper we first propose a new class of Gaussian graphical models which, together with sparseness, imposes local constancy through ${\ell}_1$-norm penalization. Second, we propose an efficient algorithm which decomposes the strictly convex maximum likelihood estimation into a sequence of problems with closed form solutions. Through synthetic experiments, we evaluate the closeness of the recovered models to the ground truth. We also test the generalization performance of our method in a wide range of complex real-world datasets and demonstrate that it can capture useful structures such as the rotation and shrinking of a beating heart, motion correlations between body parts during walking and functional interactions of brain regions. Our method outperforms the state-of-the-art structure learning techniques for Gaussian graphical models both for small and large datasets.
Algorithms for Infinitely Many-Armed Bandits
Wang, Yizao, Audibert, Jean-yves, Munos, Rรฉmi
We consider multi-armed bandit problems where the number of arms is larger than the possible number of experiments. We make a stochastic assumption on the mean-reward of a new selected arm which characterizes its probability of being anear-optimal arm. Our assumption is weaker than in previous works. We describe algorithms based on upper-confidence-bounds applied to a restricted set of randomly selected arms and provide upper-bounds on the resulting expected regret. We also derive a lower-bound which matches (up to a logarithmic factor) the upper-bound in some cases.
Multi-label Multiple Kernel Learning
Ji, Shuiwang, Sun, Liang, Jin, Rong, Ye, Jieping
We present a multi-label multiple kernel learning (MKL) formulation, in which the data are embedded into a low-dimensional space directed by the instance-label correlations encoded into a hypergraph. We formulate the problem in the kernel-induced feature space and propose to learn the kernel matrix as a linear combination of a given collection of kernel matrices in the MKL framework. The proposed learning formulation leads to a non-smooth min-max problem, and it can be cast into a semi-infinite linear program (SILP). We further propose an approximate formulation with a guaranteed error bound which involves an unconstrained and convex optimization problem. In addition, we show that the objective function of the approximate formulation is continuously differentiable with Lipschitz gradient, and hence existing methods can be employed to compute the optimal solution efficiently. We apply the proposed formulation to the automated annotation of Drosophila gene expression pattern images, and promising results have been reported in comparison with representative algorithms.
Tracking Changing Stimuli in Continuous Attractor Neural Networks
Continuous attractor neural networks (CANNs) are emerging as promising models for describing the encoding of continuous stimuli in neural systems. Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of neutrally stable states. In this study, we systematically explore how neutral stability of a CANN facilitates its tracking performance, a capacity believed to have wide applications in brain functions. We develop a perturbative approach that utilizes the dominant movement of the network stationary states in the state space. We quantify the distortions of the bump shape during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable, and the reaction time to catch up an abrupt change in stimulus.
Learning a discriminative hidden part model for human action recognition
We present a discriminative part-based approach for human action recognition from video sequences using motion features. Our model is based on the recently proposed hidden conditional random field~(hCRF) for object recognition. Similar to hCRF for object recognition, we model a human action by a flexible constellation of parts conditioned on image observations. Different from object recognition, our model combines both large-scale global features and local patch features to distinguish various actions. Our experimental results show that our model is comparable to other state-of-the-art approaches in action recognition. In particular, our experimental results demonstrate that combining large-scale global features and local patch features performs significantly better than directly applying hCRF on local patches alone.
One sketch for all: Theory and Application of Conditional Random Sampling
Li, Ping, Church, Kenneth W., Hastie, Trevor J.
Conditional Random Sampling (CRS) was originally proposed for efficiently computing pairwise ($l_2$, $l_1$) distances, in static, large-scale, and sparse data sets such as text and Web data. It was previously presented using a heuristic argument. This study extends CRS to handle dynamic or streaming data, which much better reflect the real-world situation than assuming static data. Compared with other known sketching algorithms for dimension reductions such as stable random projections, CRS exhibits a significant advantage in that it is ``one-sketch-for-all.'' In particular, we demonstrate that CRS can be applied to efficiently compute the $l_p$ distance and the Hilbertian metrics, both are popular in machine learning. Although a fully rigorous analysis of CRS is difficult, we prove that, with a simple modification, CRS is rigorous at least for an important application of computing Hamming norms. A generic estimator and an approximate variance formula are provided and tested on various applications, for computing Hamming norms, Hamming distances, and $\chi^2$ distances.
Transfer Learning by Distribution Matching for Targeted Advertising
Bickel, Steffen, Sawade, Christoph, Scheffer, Tobias
We address the problem of learning classifiers for several related tasks that may differ in their joint distribution of input and output variables. For each task, small - possibly even empty - labeled samples and large unlabeled samples are available. While the unlabeled samples reflect the target distribution, the labeled samples may be biased. We derive a solution that produces resampling weights which match the pool of all examples to the target distribution of any given task. Our work is motivated by the problem of predicting sociodemographic features for users of web portals, based on the content which they have accessed. Here, questionnaires offered to a small portion of each portal's users produce biased samples. Transfer learning enables us to make predictions even for new portals with few or no training data and improves the overall prediction accuracy.
Exploring Large Feature Spaces with Hierarchical Multiple Kernel Learning
For supervised and unsupervised learning, positive definite kernels allow to use large and potentially infinite dimensional feature spaces with a computational cost that only depends on the number of observations. This is usually done through the penalization of predictor functions by Euclidean or Hilbertian norms. In this paper, we explore penalizing by sparsity-inducing norms such as the L1-norm or the block L1-norm. We assume that the kernel decomposes into a large sum of individual basis kernels which can be embedded in a directed acyclic graph; we show that it is then possible to perform kernel selection through a hierarchical multiple kernel learning framework, in polynomial time in the number of selected kernels. This framework is naturally applied to non linear variable selection; our extensive simulations on synthetic datasets and datasets from the UCI repository show that efficiently exploring the large feature space through sparsity-inducing norms leads to state-of-the-art predictive performance.
Differentiable Sparse Coding
Bagnell, J. A., Bradley, David M.
We show how smoother priors can preserve the benefits of these sparse priors while adding stability to the Maximum A-Posteriori (MAP) estimate that makes it more useful for prediction problems. Additionally, we show how to calculate the derivative of the MAP estimate efficiently withimplicit differentiation. One prior that can be differentiated this way is KL-regularization. We demonstrate its effectiveness on a wide variety of applications, andfind that online optimization of the parameters of the KL-regularized model can significantly improve prediction performance.
Robust Regression and Lasso
Xu, Huan, Caramanis, Constantine, Mannor, Shie
We consider robust least-squares regression with feature-wise disturbance. We show that this formulation leads to tractable convex optimization problems, and we exhibit a particular uncertainty set for which the robust problem is equivalent to $\ell_1$ regularized regression (Lasso). This provides an interpretation of Lasso from a robust optimization perspective. We generalize this robust formulation to consider more general uncertainty sets, which all lead to tractable convex optimization problems. Therefore, we provide a new methodology for designing regression algorithms, which generalize known formulations. The advantage is that robustness to disturbance is a physical property that can be exploited: in addition to obtaining new formulations, we use it directly to show sparsity properties of Lasso, as well as to prove a general consistency result for robust regression problems, including Lasso, from a unified robustness perspective.