Plotting

 Country


Learning to Predict Combinatorial Structures

arXiv.org Artificial Intelligence

The major challenge in designing a discriminative learning algorithm for predicting structured data is to address the computational issues arising from the exponential size of the output space. Existing algorithms make different assumptions to ensure efficient, polynomial time estimation of model parameters. For several combinatorial structures, including cycles, partially ordered sets, permutations and other graph classes, these assumptions do not hold. In this thesis, we address the problem of designing learning algorithms for predicting combinatorial structures by introducing two new assumptions: (i) The first assumption is that a particular counting problem can be solved efficiently. The consequence is a generalisation of the classical ridge regression for structured prediction. (ii) The second assumption is that a particular sampling problem can be solved efficiently. The consequence is a new technique for designing and analysing probabilistic structured prediction models. These results can be applied to solve several complex learning problems including but not limited to multi-label classification, multi-category hierarchical classification, and label ranking.


Redundancy, Deduction Schemes, and Minimum-Size Bases for Association Rules

arXiv.org Artificial Intelligence

Association rules are among the most widely employed data analysis methods in the field of Data Mining. An association rule is a form of partial implication between two sets of binary variables. In the most common approach, association rules are parameterized by a lower bound on their confidence, which is the empirical conditional probability of their consequent given the antecedent, and/or by some other parameter bounds such as "support" or deviation from independence. We study here notions of redundancy among association rules from a fundamental perspective. We see each transaction in a dataset as an interpretation (or model) in the propositional logic sense, and consider existing notions of redundancy, that is, of logical entailment, among association rules, of the form "any dataset in which this first rule holds must obey also that second rule, therefore the second is redundant". We discuss several existing alternative definitions of redundancy between association rules and provide new characterizations and relationships among them. We show that the main alternatives we discuss correspond actually to just two variants, which differ in the treatment of full-confidence implications. For each of these two notions of redundancy, we provide a sound and complete deduction calculus, and we show how to construct complete bases (that is, axiomatizations) of absolutely minimum size in terms of the number of rules. We explore finally an approach to redundancy with respect to several association rules, and fully characterize its simplest case of two partial premises.


Detecting Danger: The Dendritic Cell Algorithm

arXiv.org Artificial Intelligence

The Dendritic Cell Algorithm (DCA) is inspired by the function of the dendritic cells of the human immune system. In nature, dendritic cells are the intrusion detection agents of the human body, policing the tissue and organs for potential invaders in the form of pathogens. In this research, and abstract model of DC behaviour is developed and subsequently used to form an algorithm, the DCA. The abstraction process was facilitated through close collaboration with laboratory- based immunologists, who performed bespoke experiments, the results of which are used as an integral part of this algorithm. The DCA is a population based algorithm, with each agent in the system represented as an 'artificial DC'. Each DC has the ability to combine multiple data streams and can add context to data suspected as anomalous. In this chapter the abstraction process and details of the resultant algorithm are given. The algorithm is applied to numerous intrusion detection problems in computer security including the detection of port scans and botnets, where it has produced impressive results with relatively low rates of false positives.


Artificial Immune Systems (2010)

arXiv.org Artificial Intelligence

The human immune system has numerous properties that make it ripe for exploitation in the computational domain, such as robustness and fault tolerance, and many different algorithms, collectively termed Artificial Immune Systems (AIS), have been inspired by it. Two generations of AIS are currently in use, with the first generation relying on simplified immune models and the second generation utilising interdisciplinary collaboration to develop a deeper understanding of the immune system and hence produce more complex models. Both generations of algorithms have been successfully applied to a variety of problems, including anomaly detection, pattern recognition, optimisation and robotics. In this chapter an overview of AIS is presented, its evolution is discussed, and it is shown that the diversification of the field is linked to the diversity of the immune system itself, leading to a number of algorithms as opposed to one archetypal system. Two case studies are also presented to help provide insight into the mechanisms of AIS; these are the idiotypic network approach and the Dendritic Cell Algorithm.


Automatic Music Composition using Answer Set Programming

arXiv.org Artificial Intelligence

Music composition used to be a pen and paper activity. These these days music is often composed with the aid of computer software, even to the point where the computer compose parts of the score autonomously. The composition of most styles of music is governed by rules. We show that by approaching the automation, analysis and verification of composition as a knowledge representation task and formalising these rules in a suitable logical language, powerful and expressive intelligent composition tools can be easily built. This application paper describes the use of answer set programming to construct an automated system, named ANTON, that can compose melodic, harmonic and rhythmic music, diagnose errors in human compositions and serve as a computer-aided composition tool. The combination of harmonic, rhythmic and melodic composition in a single framework makes ANTON unique in the growing area of algorithmic composition. With near real-time composition, ANTON reaches the point where it can not only be used as a component in an interactive composition tool but also has the potential for live performances and concerts or automatically generated background music in a variety of applications. With the use of a fully declarative language and an "off-the-shelf" reasoning engine, ANTON provides the human composer a tool which is significantly simpler, more compact and more versatile than other existing systems. This paper has been accepted for publication in Theory and Practice of Logic Programming (TPLP).


An Efficient Technique for Similarity Identification between Ontologies

arXiv.org Artificial Intelligence

Ontologies usually suffer from the semantic heterogeneity when simultaneously used in information sharing, merging, integrating and querying processes. Therefore, the similarity identification between ontologies being used becomes a mandatory task for all these processes to handle the problem of semantic heterogeneity. In this paper, we propose an efficient technique for similarity measurement between two ontologies. The proposed technique identifies all candidate pairs of similar concepts without omitting any similar pair. The proposed technique can be used in different types of operations on ontologies such as merging, mapping and aligning. By analyzing its results a reasonable improvement in terms of completeness, correctness and overall quality of the results has been found.


Vagueness of Linguistic variable

arXiv.org Artificial Intelligence

In the area of computer science focusing on creating machines that can engage on behaviors that humans consider intelligent. The ability to create intelligent machines has intrigued humans since ancient times and today with the advent of the computer and 50 years of research into various programming techniques, the dream of smart machines is becoming a reality. Researchers are creating systems which can mimic human thought, understand speech, beat the best human chessplayer, and countless other feats never before possible. Ability of the human to estimate the information is most brightly shown in using of natural languages. Using words of a natural language for valuation qualitative attributes, for example, the person pawns uncertainty in form of vagueness in itself estimations. Vague sets, vague judgments, vague conclusions takes place there and then, where and when the reasonable subject exists and also is interested in something. The vague sets theory has arisen as the answer to an illegibility of language the reasonable subject speaks. Language of a reasonable subject is generated by vague events which are created by the reason and which are operated by the mind. The theory of vague sets represents an attempt to find such approximation of vague grouping which would be more convenient, than the classical theory of sets in situations where the natural language plays a significant role. Such theory has been offered by known American mathematician Gau and Buehrer .In our paper we are describing how vagueness of linguistic variables can be solved by using the vague set theory.This paper is mainly designed for one of directions of the eventology (the theory of the random vague events), which has arisen within the limits of the probability theory and which pursue the unique purpose to describe eventologically a movement of reason.


Understanding Semantic Web and Ontologies: Theory and Applications

arXiv.org Artificial Intelligence

Semantic Web is actually an extension of the current one in that it represents information more meaningfully for humans and computers alike. It enables the description of contents and services in machine-readable form, and enables annotating, discovering, publishing, advertising and composing services to be automated. It was developed based on Ontology, which is considered as the backbone of the Semantic Web. In other words, the current Web is transformed from being machine-readable to machine-understandable. In fact, Ontology is a key technique with which to annotate semantics and provide a common, comprehensible foundation for resources on the Semantic Web. Moreover, Ontology can provide a common vocabulary, a grammar for publishing data, and can supply a semantic description of data which can be used to preserve the Ontologies and keep them ready for inference. This paper provides basic concepts of web services and the Semantic Web, defines the structure and the main applications of ontology, and provides many relevant terms are explained in order to provide a basic understanding of ontologies.


sTeX+ - a System for Flexible Formalization of Linked Data

arXiv.org Artificial Intelligence

We present the sTeX+ system, a user-driven advancement of sTeX - a semantic extension of LaTeX that allows for producing high-quality PDF documents for (proof)reading and printing, as well as semantic XML/OMDoc documents for the Web or further processing. Originally sTeX had been created as an invasive, semantic frontend for authoring XML documents. Here, we used sTeX in a Software Engineering case study as a formalization tool. In order to deal with modular pre-semantic vocabularies and relations, we upgraded it to sTeX+ in a participatory design process. We present a tool chain that starts with an sTeX+ editor and ultimately serves the generated documents as XHTML+RDFa Linked Data via an OMDoc-enabled, versioned XML database. In the final output, all structural annotations are preserved in order to enable semantic information retrieval services.


The State of the Art: Ontology Web-Based Languages: XML Based

arXiv.org Artificial Intelligence

Many formal languages have been proposed to express or represent Ontologies, including RDF, RDFS, DAML+OIL and OWL. Most of these languages are based on XML syntax, but with various terminologies and expressiveness. Therefore, choosing a language for building an Ontology is the main step. The main point of choosing language to represent Ontology is based mainly on what the Ontology will represent or be used for. That language should have a range of quality support features such as ease of use, expressive power, compatibility, sharing and versioning, internationalisation. This is because different kinds of knowledge-based applications need different language features. The main objective of these languages is to add semantics to the existing information on the web. The aims of this paper is to provide a good knowledge of existing language and understanding of these languages and how could be used.