Not enough data to create a plot.
Try a different view from the menu above.
Country
Integrating multiple sources to answer questions in Algebraic Topology
Heras, Jonathan, Pascual, Vico, Romero, Ana, Rubio, Julio
We present in this paper an evolution of a tool from a user interface for a concrete Computer Algebra system for Algebraic Topology (the Kenzo system), to a front-end allowing the interoperability among different sources for computation and deduction. The architecture allows the system not only to interface several systems, but also to make them cooperate in shared calculations.
An approach to visualize the course of solving of a research task in humans
Gavrikov, Vladimir L., Khlebopros, Rem G.
A technique to study the dynamics of solving of a research task is suggested. The research task was based on specially developed software Right- Wrong Responder (RWR), with the participants having to reveal the response logic of the program. The participants interacted with the program in the form of a semi-binary dialogue, which implies the feedback responses of only two kinds - "right" or "wrong". The technique has been applied to a small pilot group of volunteer participants. Some of them have successfully solved the task (solvers) and some have not (non-solvers). In the beginning of the work, the solvers did more wrong moves than non-solvers, and they did less wrong moves closer to the finish of the work. A phase portrait of the work both in solvers and non-solvers showed definite cycles that may correspond to sequences of partially true hypotheses that may be formulated by the participants during the solving of the task.
Real-Time Alert Correlation with Type Graphs
Tedesco, Gianni, Aickelin, Uwe
The premise of automated alert correlation is to accept that false alerts from a low level intrusion detection system are inevitable and use attack models to explain the output in an understandable way. Several algorithms exist for this purpose which use attack graphs to model the ways in which attacks can be combined. These algorithms can be classified in to two broad categories namely scenario-graph approaches, which create an attack model starting from a vulnerability assessment and type-graph approaches which rely on an abstract model of the relations between attack types. Some research in to improving the efficiency of type-graph correlation has been carried out but this research has ignored the hypothesizing of missing alerts. Our work is to present a novel type-graph algorithm which unifies correlation and hypothesizing in to a single operation. Our experimental results indicate that the approach is extremely efficient in the face of intensive alerts and produces compact output graphs comparable to other techniques.
STORM - A Novel Information Fusion and Cluster Interpretation Technique
Analysis of data without labels is commonly subject to scrutiny by unsupervised machine learning techniques. Such techniques provide more meaningful representations, useful for better understanding of a problem at hand, than by looking only at the data itself. Although abundant expert knowledge exists in many areas where unlabelled data is examined, such knowledge is rarely incorporated into automatic analysis. Incorporation of expert knowledge is frequently a matter of combining multiple data sources from disparate hypothetical spaces. In cases where such spaces belong to different data types, this task becomes even more challenging. In this paper we present a novel immune-inspired method that enables the fusion of such disparate types of data for a specific set of problems. We show that our method provides a better visual understanding of one hypothetical space with the help of data from another hypothetical space. We believe that our model has implications for the field of exploratory data analysis and knowledge discovery.
Motif Detection Inspired by Immune Memory
Wilson, William, Birkin, Phil, Aickelin, Uwe
The search for patterns or motifs in data represents an area of key interest to many researchers. In this paper we present the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify variable length unknown motifs which repeat within time series data. The algorithm searches from a completely neutral perspective that is independent of the data being analysed and the underlying motifs. In this paper we test the flexibility of the motif tracking algorithm by applying it to the search for patterns in two industrial data sets. The algorithm is able to identify a population of motifs successfully in both cases, and the value of these motifs is discussed.
Performance Evaluation of DCA and SRC on a Single Bot Detection
Al-Hammadi, Yousof, Aickelin, Uwe, Greensmith, Julie
Malicious users try to compromise systems using new techniques. One of the recent techniques used by the attacker is to perform complex distributed attacks such as denial of service and to obtain sensitive data such as password information. These compromised machines are said to be infected with malicious software termed a "bot". In this paper, we investigate the correlation of behavioural attributes such as keylogging and packet flooding behaviour to detect the existence of a single bot on a compromised machine by applying (1) Spearman's rank correlation (SRC) algorithm and (2) the Dendritic Cell Algorithm (DCA). We also compare the output results generated from these two methods to the detection of a single bot. The results show that the DCA has a better performance in detecting malicious activities.
Oil Price Trackers Inspired by Immune Memory
Wilson, WIlliam, Birkin, Phil, Aickelin, Uwe
We outline initial concepts for an immune inspired algorithm to evaluate and predict oil price time series data. The proposed solution evolves a short term pool of trackers dynamically, with each member attempting to map trends and anticipate future price movements. Successful trackers feed into a long term memory pool that can generalise across repeating trend patterns. The resulting sequence of trackers, ordered in time, can be used as a forecasting tool. Examination of the pool of evolving trackers also provides valuable insight into the properties of the crude oil market.
The Socceral Force
We have an audacious dream, we would like to develop a simulation and virtual reality system to support the decision making in European football (soccer). In this review, we summarize the efforts that we have made to fulfil this dream until recently. In addition, an introductory version of FerSML (Footballer and Football Simulation Markup Language) is presented in this paper.
Price Trackers Inspired by Immune Memory
Wilson, William, Birkin, Phil, Aickelin, Uwe
In this paper we outline initial concepts for an immune inspired algorithm to evaluate price time series data. The proposed solution evolves a short term pool of trackers dynamically through a process of proliferation and mutation, with each member attempting to map to trends in price movements. Successful trackers feed into a long term memory pool that can generalise across repeating trend patterns. Tests are performed to examine the algorithm's ability to successfully identify trends in a small data set. The influence of the long term memory pool is then examined. We find the algorithm is able to identify price trends presented successfully and efficiently.
Parcellation of fMRI Datasets with ICA and PLS-A Data Driven Approach
Ji, Yongnan, Herve, Pierre-Yves, Aickelin, Uwe, Pitiot, Alain
Inter-subject parcellation of functional Magnetic Resonance Imaging (fMRI) data based on a standard General Linear Model (GLM)and spectral clustering was recently proposed as a means to alleviate the issues associated with spatial normalization in fMRI. However, for all its appeal, a GLM-based parcellation approach introduces its own biases, in the form of a priori knowledge about the shape of Hemodynamic Response Function (HRF) and task-related signal changes, or about the subject behaviour during the task. In this paper, we introduce a data-driven version of the spectral clustering parcellation, based on Independent Component Analysis (ICA) and Partial Least Squares (PLS) instead of the GLM. First, a number of independent components are automatically selected. Seed voxels are then obtained from the associated ICA maps and we compute the PLS latent variables between the fMRI signal of the seed voxels (which covers regional variations of the HRF) and the principal components of the signal across all voxels. Finally, we parcellate all subjects data with a spectral clustering of the PLS latent variables. We present results of the application of the proposed method on both single-subject and multi-subject fMRI datasets. Preliminary experimental results, evaluated with intra-parcel variance of GLM t-values and PLS derived t-values, indicate that this data-driven approach offers improvement in terms of parcellation accuracy over GLM based techniques.