Plotting

 Country


An Approximate Subgame-Perfect Equilibrium Computation Technique for Repeated Games

AAAI Conferences

This paper presents a technique for approximating, up to any precision, the set of subgame-perfect equilibria (SPE) in repeated games with discounting. The process starts with a single hypercube approximation of the set of SPE payoff profiles. Then the initial hypercube is gradually partitioned on to a set of smaller adjacent hypercubes, while those hypercubes that cannot contain any SPE point are gradually withdrawn. Whether a given hypercube can contain an equilibrium point is verified by an appropriate mixed integer program. A special attention is paid to the question of extracting players' strategies and their representability in form of finite automata.


Symmetry Detection in General Game Playing

AAAI Conferences

We develop a method for detecting symmetries in arbitrary games and exploiting these symmetries when using tree search to play the game. Games in the General Game Playing domain are given as a set of logic based rules defining legal moves, their effects and goals of the players. The presented method transforms the rules of a game into a vertex-labeled graph such that automorphisms of the graph correspond with symmetries of the game. The algorithm detects many kinds of symmetries that often occur in games, e.g., rotation and reflection symmetries of boards, interchangeable objects, and symmetric roles. A transposition table is used to efficiently exploit the symmetries in many games.


Generalized Task Markets for Human and Machine Computation

AAAI Conferences

We discuss challenges and opportunities for developing generalized task markets where human and machine intelligence are enlisted to solve problems, based on a consideration of the competencies, availabilities, and pricing of different problem-solving resources. The approach couples human computation with machine learning and planning, and is aimed at optimizing the flow of subtasks to people and to computational problem solvers. We illustrate key ideas in the context of Lingua Mechanica, a project focused on harnessing human and machine translation skills to perform translation among languages. We present infrastructure and methods for enlisting and guiding human and machine computation for language translation, including details about the hardness of generating plans for assigning tasks to solvers. Finally, we discuss studies performed with machine and human solvers, focusing on components of a Lingua Mechanica prototype.


Evolved Intrinsic Reward Functions for Reinforcement Learning

AAAI Conferences

The reinforcement learning (RL) paradigm typically assumes a class of efficient, general search procedures that search a given reward function that is part of the problem over the space of programs--to search for reward functions. However, in animals, all reward These reward functions operate over the entire state space of signals are generated internally, rather than being received a reinforcement learning problem and, if successful, will be directly from the environment. Furthermore, animals able to quickly and automatically identify relevant variables have evolved motivational systems that facilitate learning by and features of the problem. This will allow the agent to rewarding activities that often bear a distal relationship to outperform an agent that uses the obvious task-based reward the animal's ultimate goals. Such intrinsic motivation can function. The use of genetic programming methods may alleviate cause an agent to explore and learn in the absence of external the difficulty of scaling reward function search and rewards, possibly improving its performance over a set provide a natural way to search through a very expressive of problems.


Propagating Conjunctions of AllDifferent Constraints

AAAI Conferences

We study propagation algorithms for the conjunction of two AllDifferent constraints. Solutions of an AllDifferent constraint can be seen as perfect matchings on the variable/value bipartite graph. Therefore, we investigate the problem of finding simultaneous bipartite matchings. We present an extension of the famous Hall theorem which characterizes when simultaneous bipartite matchings exists. Unfortunately, finding such matchings is NP-hard in general. However, we prove a surprising result that finding a simultaneous matching on a convex bipartite graph takes just polynomial time. Based on this theoretical result, we provide the first polynomial time bound consistency algorithm for the conjunction of two AllDifferent constraints. We identify a pathological problem on which this propagator is exponentially faster compared to existing propagators. Our experiments show that this new propagator can offer significant benefits over existing methods.


The Model-Based Approach to Autonomous Behavior: A Personal View

AAAI Conferences

The selection of the action to do next is one of the central problems faced by autonomous agents. In AI, three approaches have been used to address this problem: the programming-based approach, where the agent controller is given by the programmer, the learning-based approach, where the controller is induced from experience via a learning algorithm, and the model-based approach, where the controller is derived from a model of the problem. Planning in AI is best conceived as the model-based approach to action selection. The models represent the initial situation, actions, sensors, and goals. The main challenge in planning is computational, as all the models, whether accommodating feedback and uncertainty or not, are intractable in the worst case. In this article, I review some of the models considered in current planning research, the progress achieved in solving these models, and some of the open problems.


Grouping Strokes into Shapes in Hand-Drawn Diagrams

AAAI Conferences

Objects in freely-drawn sketches often have no spatial or temporal separation, making object recognition difficult. We present a two-step stroke-grouping algorithm that first classifies individual strokes according to the type of object to which they belong, then groups strokes with like classifications into clusters representing individual objects. The first step facilitates clustering by naturally separating the strokes, and both steps fluidly integrate spatial and temporal information. Our approach to grouping is unique in its formulation as an efficient classification task rather than, for example, an expensive search task. Our single-stroke classifier performs at least as well as existing single-stroke classifiers on text vs. nontext classification, and we present the first three-way single-stroke classification results. Our stroke grouping results are the first reported of their kind; our grouping algorithm correctly groups between 86% and 91% of the ink in diagrams from two domains, with between 69% and 79% of shapes being perfectly clustered.


Discriminant Laplacian Embedding

AAAI Conferences

Many real life applications brought by modern technologies often have multiple data sources, which are usually characterized by both attributes and pairwise similarities at the same time. For example in webpage ranking, a webpage is usually represented by a vector of term values, and meanwhile the internet linkages induce pairwise similarities among the webpages. Although both attributes and pairwise similarities are useful for class membership inference, many traditional embedding algorithms only deal with one type of input data. In order to make use of the both types of data simultaneously, in this work, we propose a novel Discriminant Laplacian Embedding (DLE) approach. Supervision information from training data are integrated into DLE to improve the discriminativity of the resulted embedding space. By solving the ambiguity problem in computing the scatter matrices caused by data points with multiple labels, we successfully extend the proposed DLE to multi-label classification. In addition, through incorporating the label correlations, the classification performance using multi-label DLE is further enhanced. Promising experimental results in extensive empirical evaluations have demonstrated the effectiveness of our approaches.


Ontological Reasoning with F-logic Lite and its Extensions

AAAI Conferences

Answering queries posed over knowledge bases is a central problem in knowledge representation and database theory. In the database area, checking query containment is an important query optimization and schema integration technique. In knowledge representation it has been used for object classification, schema integration, service discovery, and more. In the presence of a knowledge base, the problem of query containment is strictly related to that of query answering; indeed, the two are reducible to each other; we focus on the latter, and our results immediately extend to the former.


Towards Multiagent Meta-level Control

AAAI Conferences

Embedded systems consisting of collaborating agents capable of interacting with their environment are becoming ubiquitous. It is crucial for these systems to be able to adapt to the dynamic and uncertain characteristics of an open environment. In this paper, we argue that multiagent meta-level control (MMLC) is an effective way to determine when this adaptation process should be done and how much effort should be invested in adaptation as opposed to continuing with the current action plan. We describe a reinforcement learning based approach to learn decentralized meta-control policies offline. We then propose to use the learned reward model as input to a global optimization algorithm to avoid conflicting meta-level decisions between coordinating agents. Our initial experiments in the context of NetRads, a multiagent tornado tracking application show that MMLC significantly improves performance in a 3-agent network.