Not enough data to create a plot.
Try a different view from the menu above.
Country
Margin Analysis of the LVQ Algorithm
Crammer, Koby, Gilad-bachrach, Ran, Navot, Amir, Tishby, Naftali
Prototypes based algorithms are commonly used to reduce the computational complexity of Nearest-Neighbour (NN) classifiers. In this paper we discuss theoretical and algorithmical aspects of such algorithms. On the theory side, we present margin based generalization bounds that suggest that these kinds of classifiers can be more accurate then the 1-NN rule. Furthermore, we derived a training algorithm that selects a good set of prototypes using large margin principles. We also show that the 20 years old Learning Vector Quantization (LVQ) algorithm emerges naturally from our framework.
A Convergent Form of Approximate Policy Iteration
Perkins, Theodore J., Precup, Doina
We study a new, model-free form of approximate policy iteration which uses Sarsa updates with linear state-action value function approximation for policy evaluation, and a "policy improvement operator" to generate a new policy based on the learned state-action values. We prove that if the policy improvement operator produces -soft policies and is Lipschitz continuous in the action values, with a constant that is not too large, then the approximate policy iteration algorithm converges to a unique solution from any initial policy. To our knowledge, this is the first convergence result for any form of approximate policy iteration under similar computational-resource assumptions.
Classifying Patterns of Visual Motion - a Neuromorphic Approach
Heinzle, Jakob, Stocker, Alan A.
We report a system that classifies and can learn to classify patterns of visual motion online. The complete system is described by the dynamics of its physical network architectures. The combination of the following properties makes the system novel: Firstly, the front-end of the system consists of an aVLSI optical flow chip that collectively computes 2-D global visual motion in real-time [1]. Secondly, the complexity of the classification task is significantly reduced by mapping the continuous motion trajectories to sequences of'motion events'. And thirdly, all the network structures are simple and with the exception of the optical flow chip based on a Winner-Take-All (WTA) architecture. We demonstrate the application of the proposed generic system for a contactless man-machine interface that allows to write letters by visual motion. Regarding the low complexity of the system, its robustness and the already existing front-end, a complete aVLSI system-on-chip implementation is realistic, allowing various applications in mobile electronic devices.
Discriminative Densities from Maximum Contrast Estimation
Meinicke, Peter, Twellmann, Thorsten, Ritter, Helge
We propose a framework for classifier design based on discriminative densities for representation of the differences of the class-conditional distributions in a way that is optimal for classification. The densities are selected from a parametrized set by constrained maximization of some objective function which measures the average (bounded) difference, i.e. the contrast between discriminative densities. We show that maximization of the contrast is equivalent to minimization of an approximation of the Bayes risk.
Real-Time Particle Filters
Kwok, Cody, Fox, Dieter, Meila, Marina
Particle filters estimate the state of dynamical systems from sensor information. In many real time applications of particle filters, however, sensor information arrives at a significantly higher rate than the update rate of the filter. The prevalent approach to dealing with such situations is to update the particle filter as often as possible and to discard sensor information that cannot be processed in time. In this paper we present real-time particle filters, which make use of all sensor information even when the filter update rate is below the update rate of the sensors. This is achieved by representing posteriors as mixtures of sample sets, where each mixture component integrates one observation arriving during a filter update. The weights of the mixture components are set so as to minimize the approximation error introduced by the mixture representation. Thereby, our approach focuses computational resources (samples) on valuable sensor information. Experiments using data collected with a mobile robot show that our approach yields strong improvements over other approaches.
Information Regularization with Partially Labeled Data
Szummer, Martin, Jaakkola, Tommi S.
Classification with partially labeled data requires using a large number of unlabeled examples (or an estimated marginal P (x)), to further constrain the conditional P (y x) beyond a few available labeled examples. We formulate a regularization approach to linking the marginal and the conditional in a general way. The regularization penalty measures the information that is implied about the labels over covering regions. No parametric assumptions are required and the approach remains tractable even for continuous marginal densities P (x). We develop algorithms for solving the regularization problem for finite covers, establish a limiting differential equation, and exemplify the behavior of the new regularization approach in simple cases.
Clustering with the Fisher Score
Tsuda, Koji, Kawanabe, Motoaki, Müller, Klaus-Robert
Recently the Fisher score (or the Fisher kernel) is increasingly used as a feature extractor for classification problems. The Fisher score is a vector of parameter derivatives of loglikelihood of a probabilistic model. This paper gives a theoretical analysis about how class information is preserved in the space of the Fisher score, which turns out that the Fisher score consists of a few important dimensions with class information and many nuisance dimensions. When we perform clustering with the Fisher score, K-Means type methods are obviously inappropriate because they make use of all dimensions. So we will develop a novel but simple clustering algorithm specialized for the Fisher score, which can exploit important dimensions. This algorithm is successfully tested in experiments with artificial data and real data (amino acid sequences).
How Linear are Auditory Cortical Responses?
Sahani, Maneesh, Linden, Jennifer F.
By comparison to some other sensory cortices, the functional properties of cells in the primary auditory cortex are not yet well understood. Recent attempts to obtain a generalized description of auditory cortical responses have often relied upon characterization of the spectrotemporal receptive field (STRF), which amounts to a model of the stimulusresponse function (SRF) that is linear in the spectrogram of the stimulus.
Learning Graphical Models with Mercer Kernels
Bach, Francis R., Jordan, Michael I.
We present a class of algorithms for learning the structure of graphical models from data. The algorithms are based on a measure known as the kernel generalized variance (KGV), which essentially allows us to treat all variables on an equal footing as Gaussians in a feature space obtained from Mercer kernels. Thus we are able to learn hybrid graphs involving discrete and continuous variables of arbitrary type. We explore the computational properties of our approach, showing how to use the kernel trick to compute the relevant statistics in linear time. We illustrate our framework with experiments involving discrete and continuous data.
Neuromorphic Bisable VLSI Synapses with Spike-Timing-Dependent Plasticity
In these types of synapses, the short-term dynamics of the synaptic efficacies are governed by the relative timing of the pre-and post-synaptic spikes, while on long time scales the efficacies tend asymptotically to either a potentiated state or to a depressed one. We fabricated a prototype VLSI chip containing a network of integrate and fire neurons interconnected via bistable STDP synapses. Test results from this chip demonstrate the synapse's STDP learning properties, and its long-term bistable characteristics.