Plotting

 Country


Optimizing Limousine Service with AI

AAAI Conferences

A common problem faced by expanding companies is the lack of skilled and experienced domain experts, especially planners and controllers. This can seriously slow down or impede growth. This paper describes how we worked with one of the largest travel agencies in Hong Kong to alleviate this problem by using AI to support decision-making and problem-solving so that their planners/controllers can be more productive in sustaining business growth while providing quality service. This paper describes a Web-based mission critical Fleet Management System (FMS) that supports the scheduling and management of a fleet of luxury limousines. Clientele is mainly business travelers. The use of AI allowed our client to increase their business volume and expand fleet size with the same team of planners/controllers while maintaining service quality. This paper also describes our experience in building modern AI systems leveraging on Web 2.0 open-source tools and libraries. Although we used a proven AI model and search algorithm, we believe our innovation is in striking the right balance and combination of AI with modern Web 2.0 techniques to achieve low-risk implementation and deployment success as well as concrete and measurable business benefits.


A Temporal Proof System for General Game Playing

AAAI Conferences

A general game player is a system that understands the rules of unknown games and learns to play these games well without human intervention. A major challenge for research in General Game Playing is to endow a player with the ability to extract and prove game-specific knowledge from the mere game rules. We define a formal language to express temporally extended — yet local — properties of games. We also develop a provably correct proof theory for this language using the paradigm of Answer Set Programming, and we report on experiments with a practical implementation of this proof system in combination with a successful general game player.


Topological Relations between Convex Regions

AAAI Conferences

Topological relations between spatial objects are the most important kind of qualitative spatial information. Dozens of relation models have been proposed in the past two decades. These models usually make a small number of distinctions and therefore can only cope with spatial information at a fixed granularity of spatial knowledge. In this paper, we propose a topological relation model in which the topological relation between two convex plane regions can be uniquely represented as a circular string over the alphabet {u; v; x; y}. A linear algorithm is given to compute the topological relation between two convex polygons. The infinite relation calculus could be used in hierarchical spatial reasoning as well as in qualitative shape description.


SixthSense: Fast and Reliable Recognition of Dead Ends in MDPs

AAAI Conferences

The results of the latest International Probabilistic Planning Competition (IPPC-2008) indicate that the presence of dead ends, states with no trajectory to the goal, makes MDPs hard for modern probabilistic planners. Implicit dead ends, states with executable actions but no path to the goal, are particularly challenging; existing MDP solvers spend much time and memory identifying these states. As a first attempt to address this issue, we propose a machine learning algorithm called SIXTHSENSE. SIXTHSENSE helps existing MDP solvers by finding nogoods, conjunctions of literals whose truth in a state implies that the state is a dead end. Importantly, our learned nogoods are sound, and hence the states they identify are true dead ends. SIXTHSENSE is very fast, needs little training data, and takes only a small fraction of total planning time. While IPPC problems may have millions of dead ends, they may typically be represented with only a dozen or two no-goods. Thus, nogood learning efficiently produces a quick and reliable means for dead-end recognition. Our experiments show that the nogoods found by SIXTHSENSE routinely reduce planning space and time on IPPC domains, enabling some planners to solve problems they could not previously handle.


Local and Global Regressive Mapping for Manifold Learning with Out-of-Sample Extrapolation

AAAI Conferences

Over the past few years, a large family of manifold learning algorithms have been proposed, and applied to various applications. While designing new manifold learning algorithms has attracted much research attention, fewer research efforts have been focused on out-of-sample extrapolation of learned manifold. In this paper, we propose a novel algorithm of manifold learning. The proposed algorithm, namely Local and Global Regressive Mapping (LGRM), employs local regression models to grasp the manifold structure. We additionally impose a global regression term as regularization to learn a model for out-of-sample data extrapolation. Based on the algorithm, we propose a new manifold learning framework. Our framework can be applied to any manifold learning algorithms to simultaneously learn the low dimensional embedding of the training data and a model which provides explicit mapping of the out-of-sample data to the learned manifold. Experiments demonstrate that the proposed framework uncover the manifold structure precisely and can be freely applied to unseen data.


Comparing Position Auctions Computationally

AAAI Conferences

Modern techniques for representing games and computing their Nash equilibria are approaching the point where they can be used to analyze market games. We demonstrate this by showing how the equilibria of different position auction mechanisms can be tractably identified using these techniques. These results enable detailed and quantitative comparisons of the different auction mechanisms — in terms of both efficiency and revenue — under different preference models and equilibrium selection criteria.


Activity and Gait Recognition with Time-Delay Embeddings

AAAI Conferences

Activity recognition based on data from mobile wearable devices is becoming an important application area for machine learning. We propose a novel approach based on a combination of feature extraction using time-delay embedding and supervised learning. The computational requirements are considerably lower than existing approaches, so the processing can be done in real time on a low-powered portable device such as a mobile phone. We evaluate the performance of our algorithm on a large, noisy data set comprising over 50 hours of data from six different subjects, including activities such as running and walking up or down stairs. We also demonstrate the ability of the system to accurately classify an individual from a set of 25 people, based only on the characteristics of their walking gait. The system requires very little parameter tuning, and can be trained with small amounts of data.


Multilinear Maximum Distance Embedding Via L1-Norm Optimization

AAAI Conferences

Dimensionality reduction plays an important role in many machine learning and pattern recognition tasks. In this paper, we present a novel dimensionality reduction algorithm called multilinear maximum distance embedding (M2DE), which includes three key components. To preserve the local geometry and discriminant information in the embedded space, M2DE utilizes a new objective function, which aims to maximize the distances between some particular pairs of data points, such as the distances between nearby points and the distances between data points from different classes. To make the mapping of new data points straightforward, and more importantly, to keep the natural tensor structure of high-order data, M2DE integrates multilinear techniques to learn the transformation matrices sequentially. To provide reasonable and stable embedding results, M2DE employs the L1-norm, which is more robust to outliers, to measure the dissimilarity between data points. Experiments on various datasets demonstrate that M2DE achieves good embedding results of high-order data for classification tasks.


Genome Rearrangement: A Planning Approach

AAAI Conferences

Evolutionary trees of species can be reconstructed by pairwise comparison of their entire genomes. Such a comparison can be quantified by determining the number of events that change the order of genes in a genome. Earlier Erdem and Tillier formulated the pairwise comparison of entire genomes as the problem of planning rearrangement events that transform one genome to the other. We reformulate this problem as a planning problem to extend its applicability to genomes with multiple copies of genes and with unequal gene content, and illustrate its applicability and effectiveness on three real datasets: mitochondrial genomes of Metazoa, chloroplast genomes of Campanulaceae, chloroplast genomes of various land plants and green algae.


Respecting Markov Equivalence in Computing Posterior Probabilities of Causal Graphical Features

AAAI Conferences

There have been many efforts to identify causal graphical features such as directed edges between random variables from observational data. Recently, Tian et al. proposed a new dynamic programming algorithm which computes marginalized posterior probabilities of directed edge features over all the possible structures in O( n 3 n ) time when the number of parents per node is bounded by a constant, where n is the number of variables of interest. However the main drawback of this approach is that deciding a single appropriate threshold for the existence of the directed edge feature is difficult due to the scale difference of the posterior probabilities between the directed edges forming v- structures and the directed edges not forming v -structures. We claim that computing posterior probabilities of both adjacencies and v -structures is necessary and more effective for discovering causal graphical features, since it allows us to find a single appropriate decision threshold for the existence of the feature that we are testing. For efficient computation, we provide a novel dynamic programming algorithm which computes the posterior probabilities of all of n ( n – 1)/2 adjacency and n ( n –1 choose 2) v -structure features in O( n 3 * 3 n ) time.