Not enough data to create a plot.
Try a different view from the menu above.
Country
The Automatic Inference of State Invariants in TIM
As planning is applied to larger and richer domains the effort involved in constructing domain descriptions increases and becomes a significant burden on the human application designer. If general planners are to be applied successfully to large and complex domains it is necessary to provide the domain designer with some assistance in building correctly encoded domains. One way of doing this is to provide domain-independent techniques for extracting, from a domain description, knowledge that is implicit in that description and that can assist domain designers in debugging domain descriptions. This knowledge can also be exploited to improve the performance of planners: several researchers have explored the potential of state invariants in speeding up the performance of domain-independent planners. In this paper we describe a process by which state invariants can be extracted from the automatically inferred type structure of a domain. These techniques are being developed for exploitation by STAN, a Graphplan based planner that employs state analysis techniques to enhance its performance.
Decision-Theoretic Planning: Structural Assumptions and Computational Leverage
Boutilier, C., Dean, T., Hanks, S.
Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives adopted in these areas often differ in substantial ways, many planning problems of interest to researchers in these fields can be modeled as Markov decision processes (MDPs) and analyzed using the techniques of decision theory. This paper presents an overview and synthesis of MDP-related methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies or plans. Planning problems commonly possess structure in the reward and value functions used to describe performance criteria, in the functions used to describe state transitions and observations, and in the relationships among features used to describe states, actions, rewards, and observations. Specialized representations, and algorithms employing these representations, can achieve computational leverage by exploiting these various forms of structure. Certain AI techniques -- in particular those based on the use of structured, intensional representations -- can be viewed in this way. This paper surveys several types of representations for both classical and decision-theoretic planning problems, and planning algorithms that exploit these representations in a number of different ways to ease the computational burden of constructing policies or plans. It focuses primarily on abstraction, aggregation and decomposition techniques based on AI-style representations.
A Temporal Description Logic for Reasoning about Actions and Plans
A class of interval-based temporal languages for uniformly representing and reasoning about actions and plans is presented. Actions are represented by describing what is true while the action itself is occurring, and plans are constructed by temporally relating actions and world states. The temporal languages are members of the family of Description Logics, which are characterized by high expressivity combined with good computational properties. The subsumption problem for a class of temporal Description Logics is investigated and sound and complete decision procedures are given. The basic language TL-F is considered first: it is the composition of a temporal logic TL -- able to express interval temporal networks -- together with the non-temporal logic F -- a Feature Description Logic. It is proven that subsumption in this language is an NP-complete problem. Then it is shown how to reason with the more expressive languages TLU-FU and TL-ALCF. The former adds disjunction both at the temporal and non-temporal sides of the language, the latter extends the non-temporal side with set-valued features (i.e., roles) and a propositionally complete language.
Squeaky Wheel Optimization
Clements, D. P., Joslin, D. E.
We describe a general approach to optimization which we term `Squeaky Wheel' Optimization (SWO). In SWO, a greedy algorithm is used to construct a solution which is then analyzed to find the trouble spots, i.e., those elements, that, if improved, are likely to improve the objective function score. The results of the analysis are used to generate new priorities that determine the order in which the greedy algorithm constructs the next solution. This Construct/Analyze/Prioritize cycle continues until some limit is reached, or an acceptable solution is found. SWO can be viewed as operating on two search spaces: solutions and prioritizations. Successive solutions are only indirectly related, via the re-prioritization that results from analyzing the prior solution. Similarly, successive prioritizations are generated by constructing and analyzing solutions. This `coupled search' has some interesting properties, which we discuss. We report encouraging experimental results on two domains, scheduling problems that arise in fiber-optic cable manufacturing, and graph coloring problems. The fact that these domains are very different supports our claim that SWO is a general technique for optimization.
A Quantitative Version of the Gibbard-Satterthwaite Theorem for Three Alternatives
Friedgut, Ehud, Kalai, Gil, Keller, Nathan, Nisan, Noam
The Gibbard-Satterthwaite theorem states that every non-dictatorial election rule among at least three alternatives can be strategically manipulated. We prove a quantitative version of the Gibbard-Satterthwaite theorem: a random manipulation by a single random voter will succeed with a non-negligible probability for any election rule among three alternatives that is far from being a dictatorship and from having only two alternatives in its range.
Machine learning approach to inverse problem and unfolding procedure
A procedure for unfolding the true distribution from experimental data is presented. Machine learning methods are applied for simultaneous identification of an apparatus function and solving of an inverse problem. A priori information about the true distribution from theory or previous experiments is used for Monte-Carlo simulation of the training sample. The training sample can be used to calculate a transformation from the true distribution to the measured one. This transformation provides a robust solution for an unfolding problem with minimal biases and statistical errors for the set of distributions used to create the training sample. The dimensionality of the solved problem can be arbitrary. A numerical example is presented to illustrate and validate the procedure.
Minimax Policies for Combinatorial Prediction Games
Audibert, Jean-Yves, Bubeck, Sebastien, Lugosi, Gabor
We address the online linear optimization problem when the actions of the forecaster are represented by binary vectors. Our goal is to understand the magnitude of the minimax regret for the worst possible set of actions. We study the problem under three different assumptions for the feedback: full information, and the partial information models of the so-called "semi-bandit", and "bandit" problems. We consider both $L_\infty$-, and $L_2$-type of restrictions for the losses assigned by the adversary. We formulate a general strategy using Bregman projections on top of a potential-based gradient descent, which generalizes the ones studied in the series of papers Gyorgy et al. (2007), Dani et al. (2008), Abernethy et al. (2008), Cesa-Bianchi and Lugosi (2009), Helmbold and Warmuth (2009), Koolen et al. (2010), Uchiya et al. (2010), Kale et al. (2010) and Audibert and Bubeck (2010). We provide simple proofs that recover most of the previous results. We propose new upper bounds for the semi-bandit game. Moreover we derive lower bounds for all three feedback assumptions. With the only exception of the bandit game, the upper and lower bounds are tight, up to a constant factor. Finally, we answer a question asked by Koolen et al. (2010) by showing that the exponentially weighted average forecaster is suboptimal against $L_{\infty}$ adversaries.
PAC-Bayesian Analysis of the Exploration-Exploitation Trade-off
Seldin, Yevgeny, Cesa-Bianchi, Nicolò, Laviolette, François, Auer, Peter, Shawe-Taylor, John, Peters, Jan
We develop a coherent framework for integrative simultaneous analysis of the exploration-exploitation and model order selection trade-offs. We improve over our preceding results on the same subject (Seldin et al., 2011) by combining PAC-Bayesian analysis with Bernstein-type inequality for martingales. Such a combination is also of independent interest for studies of multiple simultaneously evolving martingales.
b-Bit Minwise Hashing for Large-Scale Linear SVM
Li, Ping, Moore, Joshua, Konig, Christian
In this paper, we propose to (seamlessly) integrate b-bit minwise hashing with linear SVM to substantially improve the training (and testing) efficiency using much smaller memory, with essentially no loss of accuracy. Theoretically, we prove that the resemblance matrix, the minwise hashing matrix, and the b-bit minwise hashing matrix are all positive definite matrices (kernels). Interestingly, our proof for the positive definiteness of the b-bit minwise hashing kernel naturally suggests a simple strategy to integrate b-bit hashing with linear SVM. Our technique is particularly useful when the data can not fit in memory, which is an increasingly critical issue in large-scale machine learning. Our preliminary experimental results on a publicly available webspam dataset (350K samples and 16 million dimensions) verified the effectiveness of our algorithm. For example, the training time was reduced to merely a few seconds. In addition, our technique can be easily extended to many other linear and nonlinear machine learning applications such as logistic regression.
Correction of Noisy Sentences using a Monolingual Corpus
Correction of Noisy Natural Language Text is an important and well studied problem in Natural Language Processing. It has a number of applications in domains like Statistical Machine Translation, Second Language Learning and Natural Language Generation. In this work, we consider some statistical techniques for Text Correction. We define the classes of errors commonly found in text and describe algorithms to correct them. The data has been taken from a poorly trained Machine Translation system. The algorithms use only a language model in the target language in order to correct the sentences. We use phrase based correction methods in both the algorithms. The phrases are replaced and combined to give us the final corrected sentence. We also present the methods to model different kinds of errors, in addition to results of the working of the algorithms on the test set. We show that one of the approaches fail to achieve the desired goal, whereas the other succeeds well. In the end, we analyze the possible reasons for such a trend in performance.