Plotting

 Country


Choice by Elimination via Deep Neural Networks

arXiv.org Machine Learning

We introduce Neural Choice by Elimination, a new framework that integrates deep neural networks into probabilistic sequential choice models for learning to rank. Given a set of items to chose from, the elimination strategy starts with the whole item set and iteratively eliminates the least worthy item in the remaining subset. We prove that the choice by elimination is equivalent to marginalizing out the random Gompertz latent utilities. Coupled with the choice model is the recently introduced Neural Highway Networks for approximating arbitrarily complex rank functions. We evaluate the proposed framework on a large-scale public dataset with over 425K items, drawn from the Yahoo! learning to rank challenge. It is demonstrated that the proposed method is competitive against state-of-the-art learning to rank methods.


Bayesian generalized fused lasso modeling via NEG distribution

arXiv.org Machine Learning

The fused lasso penalizes a loss function by the $L_1$ norm for both the regression coefficients and their successive differences to encourage sparsity of both. In this paper, we propose a Bayesian generalized fused lasso modeling based on a normal-exponential-gamma (NEG) prior distribution. The NEG prior is assumed into the difference of successive regression coefficients. The proposed method enables us to construct a more versatile sparse model than the ordinary fused lasso by using a flexible regularization term. We also propose a sparse fused algorithm to produce exact sparse solutions. Simulation studies and real data analyses show that the proposed method has superior performance to the ordinary fused lasso.


High-dimensional Time Series Prediction with Missing Values

arXiv.org Machine Learning

High-dimensional time series prediction is needed in applications as diverse as demand forecasting and climatology. Often, such applications require methods that are both highly scalable, and deal with noisy data in terms of corruptions or missing values. Classical time series methods usually fall short of handling both these issues. In this paper, we propose to adapt matrix matrix completion approaches that have previously been successfully applied to large scale noisy data, but which fail to adequately model high-dimensional time series due to temporal dependencies. We present a novel temporal regularized matrix factorization (TRMF) framework which supports data-driven temporal dependency learning and enables forecasting ability to our new matrix factorization approach. TRMF is highly general, and subsumes many existing matrix factorization approaches for time series data. We make interesting connections to graph regularized matrix factorization methods in the context of learning the dependencies. Experiments on both real and synthetic data show that TRMF outperforms several existing approaches for common time series tasks.


Stochastic Process Bandits: Upper Confidence Bounds Algorithms via Generic Chaining

arXiv.org Machine Learning

The paper considers the problem of global optimization in the setup of stochastic process bandits. We introduce an UCB algorithm which builds a cascade of discretization trees based on generic chaining in order to render possible his operability over a continuous domain. The theoretical framework applies to functions under weak probabilistic smoothness assumptions and also extends significantly the spectrum of application of UCB strategies. Moreover generic regret bounds are derived which are then specialized to Gaussian processes indexed on infinite-dimensional spaces as well as to quadratic forms of Gaussian processes. Lower bounds are also proved in the case of Gaussian processes to assess the optimality of the proposed algorithm.


Experimental analysis of data-driven control for a building heating system

arXiv.org Artificial Intelligence

Driven by the opportunity to harvest the flexibility related to building climate control for demand response applications, this work presents a data-driven control approach building upon recent advancements in reinforcement learning. More specifically, model assisted batch reinforcement learning is applied to the setting of building climate control subjected to a dynamic pricing. The underlying sequential decision making problem is cast on a markov decision problem, after which the control algorithm is detailed. In this work, fitted Q-iteration is used to construct a policy from a batch of experimental tuples. In those regions of the state space where the experimental sample density is low, virtual support samples are added using an artificial neural network. Finally, the resulting policy is shaped using domain knowledge. The control approach has been evaluated quantitatively using a simulation and qualitatively in a living lab. From the quantitative analysis it has been found that the control approach converges in approximately 20 days to obtain a control policy with a performance within 90% of the mathematical optimum. The experimental analysis confirms that within 10 to 20 days sensible policies are obtained that can be used for different outside temperature regimes.


Maximin Action Identification: A New Bandit Framework for Games

arXiv.org Machine Learning

We study an original problem of pure exploration in a strategic bandit model motivated by Monte Carlo Tree Search. It consists in identifying the best action in a game, when the player may sample random outcomes of sequentially chosen pairs of actions. We propose two strategies for the fixed-confidence setting: Maximin-LUCB, based on lower-and upper-confidence bounds; and Maximin-Racing, which operates by successively eliminating the sub-optimal actions. We discuss the sample complexity of both methods and compare their performance empirically. We sketch a lower bound analysis, and possible connections to an optimal algorithm.


Quantum Perceptron Models

arXiv.org Machine Learning

We demonstrate how quantum computation can provide non-trivial improvements in the computational and statistical complexity of the perceptron model. We develop two quantum algorithms for perceptron learning. The first algorithm exploits quantum information processing to determine a separating hyperplane using a number of steps sublinear in the number of data points $N$, namely $O(\sqrt{N})$. The second algorithm illustrates how the classical mistake bound of $O(\frac{1}{\gamma^2})$ can be further improved to $O(\frac{1}{\sqrt{\gamma}})$ through quantum means, where $\gamma$ denotes the margin. Such improvements are achieved through the application of quantum amplitude amplification to the version space interpretation of the perceptron model.


Secure Approximation Guarantee for Cryptographically Private Empirical Risk Minimization

arXiv.org Machine Learning

Privacy concern has been increasingly important in many machine learning (ML) problems. We study empirical risk minimization (ERM) problems under secure multi-party computation (MPC) frameworks. Main technical tools for MPC have been developed based on cryptography. One of limitations in current cryptographically private ML is that it is computationally intractable to evaluate non-linear functions such as logarithmic functions or exponential functions. Therefore, for a class of ERM problems such as logistic regression in which non-linear function evaluations are required, one can only obtain approximate solutions. In this paper, we introduce a novel cryptographically private tool called secure approximation guarantee (SAG) method. The key property of SAG method is that, given an arbitrary approximate solution, it can provide a non-probabilistic assumption-free bound on the approximation quality under cryptographically secure computation framework. We demonstrate the benefit of the SAG method by applying it to several problems including a practical privacy-preserving data analysis task on genomic and clinical information.


Generalization and Exploration via Randomized Value Functions

arXiv.org Machine Learning

We propose randomized least-squares value iteration (RLSVI) -- a new reinforcement learning algorithm designed to explore and generalize efficiently via linearly parameterized value functions. We explain why versions of least-squares value iteration that use Boltzmann or epsilon-greedy exploration can be highly inefficient, and we present computational results that demonstrate dramatic efficiency gains enjoyed by RLSVI. Further, we establish an upper bound on the expected regret of RLSVI that demonstrates near-optimality in a tabula rasa learning context. More broadly, our results suggest that randomized value functions offer a promising approach to tackling a critical challenge in reinforcement learning: synthesizing efficient exploration and effective generalization.


Discriminative Regularization for Generative Models

arXiv.org Machine Learning

We explore the question of whether the representations learned by classifiers can be used to enhance the quality of generative models. Our conjecture is that labels correspond to characteristics of natural data which are most salient to humans: identity in faces, objects in images, and utterances in speech. We propose to take advantage of this by using the representations from discriminative classifiers to augment the objective function corresponding to a generative model. In particular we enhance the objective function of the variational autoencoder, a popular generative model, with a discriminative regularization term. We show that enhancing the objective function in this way leads to samples that are clearer and have higher visual quality than the samples from the standard variational autoencoders.