Plotting

 Country


Concept Relation Discovery and Innovation Enabling Technology (CORDIET)

arXiv.org Artificial Intelligence

Concept Relation Discovery and Innovation Enabling Technology (CORDIET), is a toolbox for gaining new knowledge from unstructured text data. At the core of CORDIET is the C-K theory which captures the essential elements of innovation. The tool uses Formal Concept Analysis (FCA), Emergent Self Organizing Maps (ESOM) and Hidden Markov Models (HMM) as main artifacts in the analysis process. The user can define temporal, text mining and compound attributes. The text mining attributes are used to analyze the unstructured text in documents, the temporal attributes use these document's timestamps for analysis. The compound attributes are XML rules based on text mining and temporal attributes. The user can cluster objects with object-cluster rules and can chop the data in pieces with segmentation rules. The artifacts are optimized for efficient data analysis; object labels in the FCA lattice and ESOM map contain an URL on which the user can click to open the selected document.


Decentralized Multi-agent Plan Repair in Dynamic Environments

arXiv.org Artificial Intelligence

Achieving joint objectives by teams of cooperative planning agents requires significant coordination and communication efforts. For a single-agent system facing a plan failure in a dynamic environment, arguably, attempts to repair the failed plan in general do not straightforwardly bring any benefit in terms of time complexity. However, in multi-agent settings the communication complexity might be of a much higher importance, possibly a high communication overhead might be even prohibitive in certain domains. We hypothesize that in decentralized systems, where coordination is enforced to achieve joint objectives, attempts to repair failed multi-agent plans should lead to lower communication overhead than replanning from scratch. The contribution of the presented paper is threefold. Firstly, we formally introduce the multi-agent plan repair problem and formally present the core hypothesis underlying our work. Secondly, we propose three algorithms for multi-agent plan repair reducing the problem to specialized instances of the multi-agent planning problem. Finally, we present results of experimental validation confirming the core hypothesis of the paper.


Citizen Science: Contributions to Astronomy Research

arXiv.org Artificial Intelligence

The contributions of everyday individuals to significant research has grown dramatically beyond the early days of classical birdwatching and endeavors of amateurs of the 19th century. Now people who are casually interested in science can participate directly in research covering diverse scientific fields. Regarding astronomy, volunteers, either as individuals or as networks of people, are involved in a variety of types of studies. Citizen Science is intuitive, engaging, yet necessarily robust in its adoption of sci-entific principles and methods. Herein, we discuss Citizen Science, focusing on fully participatory projects such as Zooniverse (by several of the au-thors CL, AS, LF, SB), with mention of other programs. In particular, we make the case that citizen science (CS) can be an important aspect of the scientific data analysis pipelines provided to scientists by observatories.


Message passing for quantified Boolean formulas

arXiv.org Artificial Intelligence

We introduce two types of message passing algorithms for quantified Boolean formulas (QBF). The first type is a message passing based heuristics that can prove unsatisfiability of the QBF by assigning the universal variables in such a way that the remaining formula is unsatisfiable. In the second type, we use message passing to guide branching heuristics of a Davis-Putnam Logemann-Loveland (DPLL) complete solver. Numerical experiments show that on random QBFs our branching heuristics gives robust exponential efficiency gain with respect to the state-of-art solvers. We also manage to solve some previously unsolved benchmarks from the QBFLIB library. Apart from this our study sheds light on using message passing in small systems and as subroutines in complete solvers.


Regularized Tensor Factorizations and Higher-Order Principal Components Analysis

arXiv.org Machine Learning

High-dimensional tensors or multi-way data are becoming prevalent in areas such as biomedical imaging, chemometrics, networking and bibliometrics. Traditional approaches to finding lower dimensional representations of tensor data include flattening the data and applying matrix factorizations such as principal components analysis (PCA) or employing tensor decompositions such as the CANDECOMP / PARAFAC (CP) and Tucker decompositions. The former can lose important structure in the data, while the latter Higher-Order PCA (HOPCA) methods can be problematic in high-dimensions with many irrelevant features. We introduce frameworks for sparse tensor factorizations or Sparse HOPCA based on heuristic algorithmic approaches and by solving penalized optimization problems related to the CP decomposition. Extensions of these approaches lead to methods for general regularized tensor factorizations, multi-way Functional HOPCA and generalizations of HOPCA for structured data. We illustrate the utility of our methods for dimension reduction, feature selection, and signal recovery on simulated data and multi-dimensional microarrays and functional MRIs.


Unfair items detection in educational measurement

arXiv.org Artificial Intelligence

Measurement professionals cannot come to an agreement on the definition of the term 'item fairness'. In this paper a continuous measure of item unfairness is proposed. The more the unfairness measure deviates from zero, the less fair the item is. If the measure exceeds the cutoff value, the item is identified as definitely unfair. The new approach can identify unfair items that would not be identified with conventional procedures. The results are in accord with experts' judgments on the item qualities. Since no assumptions about scores distributions and/or correlations are assumed, the method is applicable to any educational test. Its performance is illustrated through application to scores of a real test.


A General Theory of Concave Regularization for High Dimensional Sparse Estimation Problems

arXiv.org Machine Learning

Concave regularization methods provide natural procedures for sparse recovery. However, they are difficult to analyze in the high dimensional setting. Only recently a few sparse recovery results have been established for some specific local solutions obtained via specialized numerical procedures. Still, the fundamental relationship between these solutions such as whether they are identical or their relationship to the global minimizer of the underlying nonconvex formulation is unknown. The current paper fills this conceptual gap by presenting a general theoretical framework showing that under appropriate conditions, the global solution of nonconvex regularization leads to desirable recovery performance; moreover, under suitable conditions, the global solution corresponds to the unique sparse local solution, which can be obtained via different numerical procedures. Under this unified framework, we present an overview of existing results and discuss their connections. The unified view of this work leads to a more satisfactory treatment of concave high dimensional sparse estimation procedures, and serves as guideline for developing further numerical procedures for concave regularization.


Active Bayesian Optimization: Minimizing Minimizer Entropy

arXiv.org Machine Learning

The ultimate goal of optimization is to find the minimizer of a target function.However, typical criteria for active optimization often ignore the uncertainty about the minimizer. We propose a novel criterion for global optimization and an associated sequential active learning strategy using Gaussian processes.Our criterion is the reduction of uncertainty in the posterior distribution of the function minimizer. It can also flexibly incorporate multiple global minimizers. We implement a tractable approximation of the criterion and demonstrate that it obtains the global minimizer accurately compared to conventional Bayesian optimization criteria.


A framework: Cluster detection and multidimensional visualization of automated data mining using intelligent agents

arXiv.org Artificial Intelligence

Data Mining techniques plays a vital role like extraction of required knowledge, finding unsuspected information to make strategic decision in a novel way which in term understandable by domain experts. A generalized frame work is proposed by considering non - domain experts during mining process for better understanding, making better decision and better finding new patters in case of selecting suitable data mining techniques based on the user profile by means of intelligent agents. KEYWORDS: Data Mining Techniques, Intelligent Agents, User Profile, Multidimensional Visualization, Knowledge Discovery.


Predicting Contextual Sequences via Submodular Function Maximization

arXiv.org Artificial Intelligence

Sequence optimization, where the items in a list are ordered to maximize some reward has many applications such as web advertisement placement, search, and control libraries in robotics. Previous work in sequence optimization produces a static ordering that does not take any features of the item or context of the problem into account. In this work, we propose a general approach to order the items within the sequence based on the context (e.g., perceptual information, environment description, and goals). We take a simple, efficient, reduction-based approach where the choice and order of the items is established by repeatedly learning simple classifiers or regressors for each "slot" in the sequence. Our approach leverages recent work on submodular function maximization to provide a formal regret reduction from submodular sequence optimization to simple cost-sensitive prediction. We apply our contextual sequence prediction algorithm to optimize control libraries and demonstrate results on two robotics problems: manipulator trajectory prediction and mobile robot path planning.