Not enough data to create a plot.
Try a different view from the menu above.
Country
Context models on sequences of covers
We present a class of models that, via a simple construction, enables exact, incremental, non-parametric, polynomial-time, Bayesian inference of conditional measures. The approach relies upon creating a sequence of covers on the conditioning variable and maintaining a different model for each set within a cover. Inference remains tractable by specifying the probabilistic model in terms of a random walk within the sequence of covers. We demonstrate the approach on problems of conditional density estimation, which, to our knowledge is the first closed-form, non-parametric Bayesian approach to this problem.
Complexity of and Algorithms for Borda Manipulation
Davies, Jessica, Katsirelos, George, Narodytska, Nina, Walsh, Toby
We prove that it is NP-hard for a coalition of two manipulators to compute how to manipulate the Borda voting rule. This resolves one of the last open problems in the computational complexity of manipulating common voting rules. Because of this NP-hardness, we treat computing a manipulation as an approximation problem where we try to minimize the number of manipulators. Based on ideas from bin packing and multiprocessor scheduling, we propose two new approximation methods to compute manipulations of the Borda rule. Experiments show that these methods significantly outperform the previous best known %existing approximation method. We are able to find optimal manipulations in almost all the randomly generated elections tested. Our results suggest that, whilst computing a manipulation of the Borda rule by a coalition is NP-hard, computational complexity may provide only a weak barrier against manipulation in practice.
AntNet: Distributed Stigmergetic Control for Communications Networks
This paper introduces AntNet, a novel approach to the adaptive learning of routing tables in communications networks. AntNet is a distributed, mobile agents based Monte Carlo system that was inspired by recent work on the ant colony metaphor for solving optimization problems. AntNet's agents concurrently explore the network and exchange collected information. The communication among the agents is indirect and asynchronous, mediated by the network itself. This form of communication is typical of social insects and is called stigmergy. We compare our algorithm with six state-of-the-art routing algorithms coming from the telecommunications and machine learning fields. The algorithms' performance is evaluated over a set of realistic testbeds. We run many experiments over real and artificial IP datagram networks with increasing number of nodes and under several paradigmatic spatial and temporal traffic distributions. Results are very encouraging. AntNet showed superior performance under all the experimental conditions with respect to its competitors. We analyze the main characteristics of the algorithm and try to explain the reasons for its superiority.
Learning to Order Things
Cohen, W. W., Schapire, R. E., Singer, Y.
There are many applications in which it is desirable to order rather than classify instances. Here we consider the problem of learning how to order instances given feedback in the form of preference judgments, i.e., statements to the effect that one instance should be ranked ahead of another. We outline a two-stage approach in which one first learns by conventional means a binary preference function indicating whether it is advisable to rank one instance before another. Here we consider an on-line algorithm for learning preference functions that is based on Freund and Schapire's 'Hedge' algorithm. In the second stage, new instances are ordered so as to maximize agreement with the learned preference function. We show that the problem of finding the ordering that agrees best with a learned preference function is NP-complete. Nevertheless, we describe simple greedy algorithms that are guaranteed to find a good approximation. Finally, we show how metasearch can be formulated as an ordering problem, and present experimental results on learning a combination of 'search experts', each of which is a domain-specific query expansion strategy for a web search engine.
Constructing Conditional Plans by a Theorem-Prover
The research on conditional planning rejects the assumptions that there is no uncertainty or incompleteness of knowledge with respect to the state and changes of the system the plans operate on. Without these assumptions the sequences of operations that achieve the goals depend on the initial state and the outcomes of nondeterministic changes in the system. This setting raises the questions of how to represent the plans and how to perform plan search. The answers are quite different from those in the simpler classical framework. In this paper, we approach conditional planning from a new viewpoint that is motivated by the use of satisfiability algorithms in classical planning. Translating conditional planning to formulae in the propositional logic is not feasible because of inherent computational limitations. Instead, we translate conditional planning to quantified Boolean formulae. We discuss three formalizations of conditional planning as quantified Boolean formulae, and present experimental results obtained with a theorem-prover.
Complexity of Prioritized Default Logics
In default reasoning, usually not all possible ways of resolving conflicts between default rules are acceptable. Criteria expressing acceptable ways of resolving the conflicts may be hardwired in the inference mechanism, for example specificity in inheritance reasoning can be handled this way, or they may be given abstractly as an ordering on the default rules. In this article we investigate formalizations of the latter approach in Reiter's default logic. Our goal is to analyze and compare the computational properties of three such formalizations in terms of their computational complexity: the prioritized default logics of Baader and Hollunder, and Brewka, and a prioritized default logic that is based on lexicographic comparison. The analysis locates the propositional variants of these logics on the second and third levels of the polynomial hierarchy, and identifies the boundary between tractable and intractable inference for restricted classes of prioritized default theories.
The Divide-and-Conquer Subgoal-Ordering Algorithm for Speeding up Logic Inference
It is common to view programs as a combination of logic and control: the logic part defines what the program must do, the control part -- how to do it. The Logic Programming paradigm was developed with the intention of separating the logic from the control. Recently, extensive research has been conducted on automatic generation of control for logic programs. Only a few of these works considered the issue of automatic generation of control for improving the efficiency of logic programs. In this paper we present a novel algorithm for automatic finding of lowest-cost subgoal orderings. The algorithm works using the divide-and-conquer strategy. The given set of subgoals is partitioned into smaller sets, based on co-occurrence of free variables. The subsets are ordered recursively and merged, yielding a provably optimal order. We experimentally demonstrate the utility of the algorithm by testing it in several domains, and discuss the possibilities of its cooperation with other existing methods.
Variational Cumulant Expansions for Intractable Distributions
Intractable distributions present a common difficulty in inference within the probabilistic knowledge representation framework and variational methods have recently been popular in providing an approximate solution. In this article, we describe a perturbational approach in the form of a cumulant expansion which, to lowest order, recovers the standard Kullback-Leibler variational bound. Higher-order terms describe corrections on the variational approach without incurring much further computational cost. The relationship to other perturbational approaches such as TAP is also elucidated. We demonstrate the method on a particular class of undirected graphical models, Boltzmann machines, for which our simulation results confirm improved accuracy and enhanced stability during learning.
Solving Highly Constrained Search Problems with Quantum Computers
A previously developed quantum search algorithm for solving 1-SAT problems in a single step is generalized to apply to a range of highly constrained k-SAT problems. We identify a bound on the number of clauses in satisfiability problems for which the generalized algorithm can find a solution in a constant number of steps as the number of variables increases. This performance contrasts with the linear growth in the number of steps required by the best classical algorithms, and the exponential number required by classical and quantum methods that ignore the problem structure. In some cases, the algorithm can also guarantee that insoluble problems in fact have no solutions, unlike previously proposed quantum search algorithms.
Extensible Knowledge Representation: the Case of Description Reasoners
This paper offers an approach to extensible knowledge representation and reasoning for a family of formalisms known as Description Logics. The approach is based on the notion of adding new concept constructors, and includes a heuristic methodology for specifying the desired extensions, as well as a modularized software architecture that supports implementing extensions. The architecture detailed here falls in the normalize-compared paradigm, and supports both intentional reasoning (subsumption) involving concepts, and extensional reasoning involving individuals after incremental updates to the knowledge base. The resulting approach can be used to extend the reasoner with specialized notions that are motivated by specific problems or application areas, such as reasoning about dates, plans, etc. In addition, it provides an opportunity to implement constructors that are not currently yet sufficiently well understood theoretically, but are needed in practice. Also, for constructors that are provably hard to reason with (e.g., ones whose presence would lead to undecidability), it allows the implementation of incomplete reasoners where the incompleteness is tailored to be acceptable for the application at hand.