Plotting

 Country


Distributed Anytime MAP Inference

arXiv.org Artificial Intelligence

We present a distributed anytime algorithm for performing MAP inference in graphical models. The problem is formulated as a linear programming relaxation over the edges of a graph. The resulting program has a constraint structure that allows application of the Dantzig-Wolfe decomposition principle. Subprograms are defined over individual edges and can be computed in a distributed manner. This accommodates solutions to graphs whose state space does not fit in memory. The decomposition master program is guaranteed to compute the optimal solution in a finite number of iterations, while the solution converges monotonically with each iteration. Formulating the MAP inference problem as a linear program allows additional (global) constraints to be defined; something not possible with message passing algorithms. Experimental results show that our algorithm's solution quality outperforms most current algorithms and it scales well to large problems.


Message-Passing Algorithms for Quadratic Programming Formulations of MAP Estimation

arXiv.org Artificial Intelligence

Computing maximum a posteriori (MAP) estimation in graphical models is an important inference problem with many applications. We present message-passing algorithms for quadratic programming (QP) formulations of MAP estimation for pairwise Markov random fields. In particular, we use the concave-convex procedure (CCCP) to obtain a locally optimal algorithm for the non-convex QP formulation. A similar technique is used to derive a globally convergent algorithm for the convex QP relaxation of MAP. We also show that a recently developed expectation-maximization (EM) algorithm for the QP formulation of MAP can be derived from the CCCP perspective. Experiments on synthetic and real-world problems confirm that our new approach is competitive with max-product and its variations. Compared with CPLEX, we achieve more than an order-of-magnitude speedup in solving optimally the convex QP relaxation.


The Structure of Signals: Causal Interdependence Models for Games of Incomplete Information

arXiv.org Artificial Intelligence

Traditional economic models typically treat private information, or signals, as generated from some underlying state. Recent work has explicated alternative models, where signals correspond to interpretations of available information. We show that the difference between these formulations can be sharply cast in terms of causal dependence structure, and employ graphical models to illustrate the distinguishing characteristics. The graphical representation supports inferences about signal patterns in the interpreted framework, and suggests how results based on the generated model can be extended to more general situations. Specific insights about bidding games in classical auction mechanisms derive from qualitative graphical models.


Symbolic Dynamic Programming for Discrete and Continuous State MDPs

arXiv.org Artificial Intelligence

Many real-world decision-theoretic planning problems can be naturally modeled with discrete and continuous state Markov decision processes (DC-MDPs). While previous work has addressed automated decision-theoretic planning for DCMDPs, optimal solutions have only been defined so far for limited settings, e.g., DC-MDPs having hyper-rectangular piecewise linear value functions. In this work, we extend symbolic dynamic programming (SDP) techniques to provide optimal solutions for a vastly expanded class of DCMDPs. To address the inherent combinatorial aspects of SDP, we introduce the XADD - a continuous variable extension of the algebraic decision diagram (ADD) - that maintains compact representations of the exact value function. Empirically, we demonstrate an implementation of SDP with XADDs on various DC-MDPs, showing the first optimal automated solutions to DCMDPs with linear and nonlinear piecewise partitioned value functions and showing the advantages of constraint-based pruning for XADDs.


Approximation by Quantization

arXiv.org Artificial Intelligence

Inference in graphical models consists of repeatedly multiplying and summing out potentials. It is generally intractable because the derived potentials obtained in this way can be exponentially large. Approximate inference techniques such as belief propagation and variational methods combat this by simplifying the derived potentials, typically by dropping variables from them. We propose an alternate method for simplifying potentials: quantizing their values. Quantization causes different states of a potential to have the same value, and therefore introduces context-specific independencies that can be exploited to represent the potential more compactly. We use algebraic decision diagrams (ADDs) to do this efficiently. We apply quantization and ADD reduction to variable elimination and junction tree propagation, yielding a family of bounded approximate inference schemes. Our experimental tests show that our new schemes significantly outperform state-of-the-art approaches on many benchmark instances.


Solving Cooperative Reliability Games

arXiv.org Artificial Intelligence

Cooperative games model the allocation of profit from joint actions, following considerations such as stability and fairness. We propose the reliability extension of such games, where agents may fail to participate in the game. In the reliability extension, each agent only "survives" with a certain probability, and a coalition's value is the probability that its surviving members would be a winning coalition in the base game. We study prominent solution concepts in such games, showing how to approximate the Shapley value and how to compute the core in games with few agent types. We also show that applying the reliability extension may stabilize the game, making the core non-empty even when the base game has an empty core.


Graphical Models for Bandit Problems

arXiv.org Artificial Intelligence

We introduce a rich class of graphical models for multi-armed bandit problems that permit both the state or context space and the action space to be very large, yet succinctly specify the payoffs for any context-action pair. Our main result is an algorithm for such models whose regret is bounded by the number of parameters and whose running time depends only on the treewidth of the graph substructure induced by the action space.


Iterated risk measures for risk-sensitive Markov decision processes with discounted cost

arXiv.org Artificial Intelligence

We demonstrate a limitation of discounted expected utility, a standard approach for representing the preference to risk when future cost is discounted. Specifically, we provide an example of the preference of a decision maker that appears to be rational but cannot be represented with any discounted expected utility. A straightforward modification to discounted expected utility leads to inconsistent decision making over time. We will show that an iterated risk measure can represent the preference that cannot be represented by any discounted expected utility and that the decisions based on the iterated risk measure are consistent over time.


A Geometric Traversal Algorithm for Reward-Uncertain MDPs

arXiv.org Artificial Intelligence

Markov decision processes (MDPs) are widely used in modeling decision making problems in stochastic environments. However, precise specification of the reward functions in MDPs is often very difficult. Recent approaches have focused on computing an optimal policy based on the minimax regret criterion for obtaining a robust policy under uncertainty in the reward function. One of the core tasks in computing the minimax regret policy is to obtain the set of all policies that can be optimal for some candidate reward function. In this paper, we propose an efficient algorithm that exploits the geometric properties of the reward function associated with the policies. We also present an approximate version of the method for further speed up. We experimentally demonstrate that our algorithm improves the performance by orders of magnitude.


Factored Filtering of Continuous-Time Systems

arXiv.org Artificial Intelligence

We consider filtering for a continuous-time, or asynchronous, stochastic system where the full distribution over states is too large to be stored or calculated. We assume that the rate matrix of the system can be compactly represented and that the belief distribution is to be approximated as a product of marginals. The essential computation is the matrix exponential. We look at two different methods for its computation: ODE integration and uniformization of the Taylor expansion. For both we consider approximations in which only a factored belief state is maintained. For factored uniformization we demonstrate that the KL-divergence of the filtering is bounded. Our experimental results confirm our factored uniformization performs better than previously suggested uniformization methods and the mean field algorithm.