Not enough data to create a plot.
Try a different view from the menu above.
Country
The Deterministic Part of IPC-4: An Overview
We provide an overview of the organization and results of the deterministic part of the 4th International Planning Competition, i.e., of the part concerned with evaluating systems doing deterministic planning. IPC-4 attracted even more competing systems than its already large predecessors, and the competition event was revised in several important respects. After giving an introduction to the IPC, we briefly explain the main differences between the deterministic part of IPC-4 and its predecessors. We then introduce formally the language used, called PDDL2.2 that extends PDDL2.1 by derived predicates and timed initial literals. We list the competing systems and overview the results of the competition. The entire set of data is far too large to be presented in full. We provide a detailed summary; the complete data is available in an online appendix. We explain how we awarded the competition prizes.
Where 'Ignoring Delete Lists' Works: Local Search Topology in Planning Benchmarks
Between 1998 and 2004, the planning community has seen vast progress in terms of the sizes of benchmark examples that domain-independent planners can tackle successfully. The key technique behind this progress is the use of heuristic functions based on relaxing the planning task at hand, where the relaxation is to assume that all delete lists are empty. The unprecedented success of such methods, in many commonly used benchmark examples, calls for an understanding of what classes of domains these methods are well suited for. In the investigation at hand, we derive a formal background to such an understanding. We perform a case study covering a range of 30 commonly used STRIPS and ADL benchmark domains, including all examples used in the first four international planning competitions. We *prove* connections between domain structure and local search topology -- heuristic cost surface properties -- under an idealized version of the heuristic functions used in modern planners. The idealized heuristic function is called h^+, and differs from the practically used functions in that it returns the length of an *optimal* relaxed plan, which is NP-hard to compute. We identify several key characteristics of the topology under h^+, concerning the existence/non-existence of unrecognized dead ends, as well as the existence/non-existence of constant upper bounds on the difficulty of escaping local minima and benches. These distinctions divide the (set of all) planning domains into a taxonomy of classes of varying h^+ topology. As it turns out, many of the 30 investigated domains lie in classes with a relatively easy topology. Most particularly, 12 of the domains lie in classes where FFs search algorithm, provided with h^+, is a polynomial solving mechanism. We also present results relating h^+ to its approximation as implemented in FF. The behavior regarding dead ends is provably the same. We summarize the results of an empirical investigation showing that, in many domains, the topological qualities of h^+ are largely inherited by the approximation. The overall investigation gives a rare example of a successful analysis of the connections between typical-case problem structure, and search performance. The theoretical investigation also gives hints on how the topological phenomena might be automatically recognizable by domain analysis techniques. We outline some preliminary steps we made into that direction.
The Case for Durative Actions: A Commentary on PDDL2.1
The addition of durative actions to PDDL2.1 sparked some controversy. Fox and Long argued that actions should be considered as instantaneous, but can start and stop processes. Ultimately, a limited notion of durative actions was incorporated into the language. I argue that this notion is still impoverished, and that the underlying philosophical position of regarding durative actions as being a shorthand for a start action, process, and stop action ignores the realities of modelling and execution for complex systems.
Learning in Real-Time Search: A Unifying Framework
Real-time search methods are suited for tasks in which the agent is interacting with an initially unknown environment in real time. In such simultaneous planning and learning problems, the agent has to select its actions in a limited amount of time, while sensing only a local part of the environment centered at the agents current location. Real-time heuristic search agents select actions using a limited lookahead search and evaluating the frontier states with a heuristic function. Over repeated experiences, they refine heuristic values of states to avoid infinite loops and to converge to better solutions. The wide spread of such settings in autonomous software and hardware agents has led to an explosion of real-time search algorithms over the last two decades. Not only is a potential user confronted with a hodgepodge of algorithms, but he also faces the choice of control parameters they use. In this paper we address both problems. The first contribution is an introduction of a simple three-parameter framework (named LRTS) which extracts the core ideas behind many existing algorithms. We then prove that LRTA*, epsilon-LRTA*, SLA*, and gamma-Trap algorithms are special cases of our framework. Thus, they are unified and extended with additional features. Second, we prove completeness and convergence of any algorithm covered by the LRTS framework. Third, we prove several upper-bounds relating the control parameters and solution quality. Finally, we analyze the influence of the three control parameters empirically in the realistic scalable domains of real-time navigation on initially unknown maps from a commercial role-playing game as well as routing in ad hoc sensor networks.
Representing Conversations for Scalable Overhearing
Open distributed multi-agent systems are gaining interest in the academic community and in industry. In such open settings, agents are often coordinated using standardized agent conversation protocols. The representation of such protocols (for analysis, validation, monitoring, etc) is an important aspect of multi-agent applications. Recently, Petri nets have been shown to be an interesting approach to such representation, and radically different approaches using Petri nets have been proposed. However, their relative strengths and weaknesses have not been examined. Moreover, their scalability and suitability for different tasks have not been addressed. This paper addresses both these challenges. First, we analyze existing Petri net representations in terms of their scalability and appropriateness for overhearing, an important task in monitoring open multi-agent systems. Then, building on the insights gained, we introduce a novel representation using Colored Petri nets that explicitly represent legal joint conversation states and messages. This representation approach offers significant improvements in scalability and is particularly suitable for overhearing. Furthermore, we show that this new representation offers a comprehensive coverage of all conversation features of FIPA conversation standards. We also present a procedure for transforming AUML conversation protocol diagrams (a standard human-readable representation), to our Colored Petri net representation.
PDDL2.1 - The Art of the Possible? Commentary on Fox and Long
PDDL2.1 was designed to push the envelope of what planning algorithms can do, and it has succeeded. It adds two important features: durative actions,which take time (and may have continuous effects); and objective functions for measuring the quality of plans. The concept of durative actions is flawed; and the treatment of their semantics reveals too strong an attachment to the way many contemporary planners work. Future PDDL innovators should focus on producing a clean semantics for additions to the language, and let planner implementers worry about coupling their algorithms to problems expressed in the latest version of the language.
Distributed Reasoning in a Peer-to-Peer Setting: Application to the Semantic Web
Adjiman, P., Chatalic, P., Goasdoue, F., Rousset, M. C., Simon, L.
In a peer-to-peer inference system, each peer can reason locally but can also solicit some of its acquaintances, which are peers sharing part of its vocabulary. In this paper, we consider peer-to-peer inference systems in which the local theory of each peer is a set of propositional clauses defined upon a local vocabulary. An important characteristic of peer-to-peer inference systems is that the global theory (the union of all peer theories) is not known (as opposed to partition-based reasoning systems). The main contribution of this paper is to provide the first consequence finding algorithm in a peer-to-peer setting: DeCA. It is anytime and computes consequences gradually from the solicited peer to peers that are more and more distant. We exhibit a sufficient condition on the acquaintance graph of the peer-to-peer inference system for guaranteeing the completeness of this algorithm. Another important contribution is to apply this general distributed reasoning setting to the setting of the Semantic Web through the Somewhere semantic peer-to-peer data management system. The last contribution of this paper is to provide an experimental analysis of the scalability of the peer-to-peer infrastructure that we propose, on large networks of 1000 peers.
Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results
A non-binary Constraint Satisfaction Problem (CSP) can be solved directly using extended versions of binary techniques. Alternatively, the non-binary problem can be translated into an equivalent binary one. In this case, it is generally accepted that the translated problem can be solved by applying well-established techniques for binary CSPs. In this paper we evaluate the applicability of the latter approach. We demonstrate that the use of standard techniques for binary CSPs in the encodings of non-binary problems is problematic and results in models that are very rarely competitive with the non-binary representation. To overcome this, we propose specialized arc consistency and search algorithms for binary encodings, and we evaluate them theoretically and empirically. We consider three binary representations; the hidden variable encoding, the dual encoding, and the double encoding. Theoretical and empirical results show that, for certain classes of non-binary constraints, binary encodings are a competitive option, and in many cases, a better one than the non-binary representation.
Higher-Order Markov Tag-Topic Models for Tagged Documents and Images
Zeng, Jia, Feng, Wei, Cheung, William K., Li, Chun-Hung
This paper studies the topic modeling problem of tagged documents and images. Higher-order relations among tagged documents and images are major and ubiquitous characteristics, and play positive roles in extracting reliable and interpretable topics. In this paper, we propose the tag-topic models (TTM) to depict such higher-order topic structural dependencies within the Markov random field (MRF) framework. First, we use the novel factor graph representation of latent Dirichlet allocation (LDA)-based topic models from the MRF perspective, and present an efficient loopy belief propagation (BP) algorithm for approximate inference and parameter estimation. Second, we propose the factor hypergraph representation of TTM, and focus on both pairwise and higher-order relation modeling among tagged documents and images. Efficient loopy BP algorithm is developed to learn TTM, which encourages the topic labeling smoothness among tagged documents and images. Extensive experimental results confirm the incorporation of higher-order relations to be effective in enhancing the overall topic modeling performance, when compared with current state-of-the-art topic models, in many text and image mining tasks of broad interests such as word and link prediction, document classification, and tag recommendation.
Towards Optimal Learning of Chain Graphs
In this paper, we extend Meek's conjecture (Meek 1997) from directed and acyclic graphs to chain graphs, and prove that the extended conjecture is true. Specifically, we prove that if a chain graph H is an independence map of the independence model induced by another chain graph G, then (i) G can be transformed into H by a sequence of directed and undirected edge additions and feasible splits and mergings, and (ii) after each operation in the sequence H remains an independence map of the independence model induced by G. Our result has the same important consequence for learning chain graphs from data as the proof of Meek's conjecture in (Chickering 2002) had for learning Bayesian networks from data: It makes it possible to develop efficient and asymptotically correct learning algorithms under mild assumptions.