Not enough data to create a plot.
Try a different view from the menu above.
Country
Heuristic Search Value Iteration for POMDPs
We present a novel POMDP planning algorithm called heuristic search value iteration (HSVI).HSVI is an anytime algorithm that returns a policy and a provable bound on its regret with respect to the optimal policy. HSVI gets its power by combining two well-known techniques: attention-focusing search heuristics and piecewise linear convex representations of the value function. HSVI's soundness and convergence have been proven. On some benchmark problems from the literature, HSVI displays speedups of greater than 100 with respect to other state-of-the-art POMDP value iteration algorithms. We also apply HSVI to a new rover exploration problem 10 times larger than most POMDP problems in the literature.
Belief Propagation for Min-cost Network Flow: Convergence and Correctness
Gamarnik, David, Shah, Devavrat, Wei, Yehua
Message passing type algorithms such as the so-called Belief Propagation algorithm have recently gained a lot of attention in the statistics, signal processing and machine learning communities as attractive algorithms for solving a variety of optimization and inference problems. As a decentralized, easy to implement and empirically successful algorithm, BP deserves attention from the theoretical standpoint, and here not much is known at the present stage. In order to fill this gap we consider the performance of the BP algorithm in the context of the capacitated minimum-cost network flow problem - the classical problem in the operations research field. We prove that BP converges to the optimal solution in the pseudo-polynomial time, provided that the optimal solution of the underlying problem is unique and the problem input is integral. Moreover, we present a simple modification of the BP algorithm which gives a fully polynomial-time randomized approximation scheme (FPRAS) for the same problem, which no longer requires the uniqueness of the optimal solution. This is the first instance where BP is proved to have fully-polynomial running time. Our results thus provide a theoretical justification for the viability of BP as an attractive method to solve an important class of optimization problems.
A Logic Programming Framework for Possibilistic Argumentation with Vague Knowledge
Chesnevar, Carlos, Simari, Guillermo, Alsinet, Teresa, Godo, Lluis
Defeasible argumentation frameworks have evolved to become a sound setting to formalize commonsense, qualitative reasoning from incomplete and potentially inconsistent knowledge. Defeasible Logic Programming (DeLP) is a defeasible argumentation formalism based on an extension of logic programming. Although DeLP has been successfully integrated in a number of different real-world applications, DeLP cannot deal with explicit uncertainty, nor with vague knowledge, as defeasibility is directly encoded in the object language. This paper introduces P-DeLP, a new logic programming language that extends original DeLP capabilities for qualitative reasoning by incorporating the treatment of possibilistic uncertainty and fuzzy knowledge. Such features will be formalized on the basis of PGL, a possibilistic logic based on Godel fuzzy logic.
Stable Independance and Complexity of Representation
de Waal, Peter, van der Gaag, Linda C.
The representation of independence relations generally builds upon the well-known semigraphoid axioms of independence. Recently, a representation has been proposed that captures a set of dominant statements of an independence relation from which any other statement can be generated by means of the axioms; the cardinality of this set is taken to indicate the complexity of the relation. Building upon the idea of dominance, we introduce the concept of stability to provide for a more compact representation of independence. We give an associated algorithm for establishing such a representation.We show that, with our concept of stability, many independence relations are found to be of lower complexity than with existing representations.
Metrics for Finite Markov Decision Processes
Ferns, Norman, Panangaden, Prakash, Precup, Doina
We present metrics for measuring the similarity of states in a finite Markov decision process (MDP). The formulation of our metrics is based on the notion of bisimulation for MDPs, with an aim towards solving discounted infinite horizon reinforcement learning tasks. Such metrics can be used to aggregate states, as well as to better structure other value function approximators (e.g., memory-based or nearest-neighbor approximators). We provide bounds that relate our metric distances to the optimal values of states in the given MDP.
Exploiting First-Order Regression in Inductive Policy Selection
Gretton, Charles, Thiebaux, Sylvie
We consider the problem of computing optimal generalised policies for relational Markov decision processes. We describe an approach combining some of the benefits of purely inductive techniques with those of symbolic dynamic programming methods. The latter reason about the optimal value function using first-order decision theoretic regression and formula rewriting, while the former, when provided with a suitable hypotheses language, are capable of generalising value functions or policies for small instances. Our idea is to use reasoning and in particular classical first-order regression to automatically generate a hypotheses language dedicated to the domain at hand, which is then used as input by an inductive solver. This approach avoids the more complex reasoning of symbolic dynamic programming while focusing the inductive solver's attention on concepts that are specifically relevant to the optimal value function for the domain considered.
Robust Probabilistic Inference in Distributed Systems
Paskin, Mark, Guestrin, Carlos E.
Probabilistic inference problems arise naturally in distributed systems such as sensor networks and teams of mobile robots. Inference algorithms that use message passing are a natural fit for distributed systems, but they must be robust to the failure situations that arise in real-world settings, such as unreliable communication and node failures. Unfortunately, the popular sum-product algorithm can yield very poor estimates in these settings because the nodes' beliefs before convergence can be arbitrarily different from the correct posteriors. In this paper, we present a new message passing algorithm for probabilistic inference which provides several crucial guarantees that the standard sum-product algorithm does not. Not only does it converge to the correct posteriors, but it is also guaranteed to yield a principled approximation at any point before convergence. In addition, the computational complexity of the message passing updates depends only upon the model, and is dependent of the network topology of the distributed system. We demonstrate the approach with detailed experimental results on a distributed sensor calibration task using data from an actual sensor network deployment.
A Complete Anytime Algorithm for Treewidth
In this paper, we present a Branch and Bound algorithm called QuickBB for computing the treewidth of an undirected graph. This algorithm performs a search in the space of perfect elimination ordering of vertices of the graph. The algorithm uses novel pruning and propagation techniques which are derived from the theory of graph minors and graph isomorphism. We present a new algorithm called minor-min-width for computing a lower bound on treewidth that is used within the branch and bound algorithm and which improves over earlier available lower bounds. Empirical evaluation of QuickBB on randomly generated graphs and benchmarks in Graph Coloring and Bayesian Networks shows that it is consistently better than complete algorithms like QuickTree [Shoikhet and Geiger, 1997] in terms of cpu time. QuickBB also has good anytime performance, being able to generate a better upper bound on treewidth of some graphs whose optimal treewidth could not be computed up to now.
On finding minimal w-cutset
Bidyuk, Bozhena, Dechter, Rina
The complexity of a reasoning task over a graphical model is tied to the induced width of the underlying graph. It is well-known that the conditioning (assigning values) on a subset of variables yields a subproblem of the reduced complexity where instantiated variables are removed. If the assigned variables constitute a cycle-cutset, the rest of the network is singly-connected and therefore can be solved by linear propagation algorithms. A w-cutset is a generalization of a cycle-cutset defined as a subset of nodes such that the subgraph with cutset nodes removed has induced-width of w or less. In this paper we address the problem of finding a minimal w-cutset in a graph. We relate the problem to that of finding the minimal w-cutset of a treedecomposition. The latter can be mapped to the well-known set multi-cover problem. This relationship yields a proof of NP-completeness on one hand and a greedy algorithm for finding a w-cutset of a tree decomposition on the other. Empirical evaluation of the algorithms is presented.
Case-Factor Diagrams for Structured Probabilistic Modeling
McAllester, David A., Collins, Michael, Pereira, Fernando
We introduce a probabilistic formalism subsuming Markov random fields of bounded tree width and probabilistic context free grammars. Our models are based on a representation of Boolean formulas that we call case-factor diagrams (CFDs). CFDs are similar to binary decision diagrams (BDDs) but are concise for circuits of bounded tree width (unlike BDDs) and can concisely represent the set of parse trees over a given string undera given context free grammar (also unlike BDDs). A probabilistic model consists of aCFD defining a feasible set of Boolean assignments and a weight (or cost) for each individual Boolean variable. We give an insideoutside algorithm for simultaneously computing the marginal of each Boolean variable, and a Viterbi algorithm for finding the mininum cost variable assignment. Both algorithms run in time proportional to the size of the CFD.