Plotting

 Country


A Comparison of Axiomatic Approaches to Qualitative Decision Making Using Possibility Theory

arXiv.org Artificial Intelligence

In this paper we analyze two recent axiomatic approaches proposed by Dubois et al and by Giang and Shenoy to qualitative decision making where uncertainty is described by possibility theory. Both axiomtizations are inspired by von Neumann and Morgenstern's system of axioms for the case of probability theory. We show that our approach naturally unifies two axiomatic systems that correspond respectively to pessimistic and optimistic decision criteria proposed by Dubois et al. The simplifying unification is achieved by (i) replacing axioms that are supposed to reflect two informational attitudes (uncertainty aversion and uncertainty attraction) by an axiom that imposes order on set of standard lotteries and (ii) using a binary utility scale in which each utility level is represented by a pair of numbers.


Artificial Intelligence Framework for Simulating Clinical Decision-Making: A Markov Decision Process Approach

arXiv.org Artificial Intelligence

In the modern healthcare system, rapidly expanding costs/complexity, the growing myriad of treatment options, and exploding information streams that often do not effectively reach the front lines hinder the ability to choose optimal treatment decisions over time. The goal in this paper is to develop a general purpose (non-disease-specific) computational/artificial intelligence (AI) framework to address these challenges. This serves two potential functions: 1) a simulation environment for exploring various healthcare policies, payment methodologies, etc., and 2) the basis for clinical artificial intelligence - an AI that can think like a doctor. This approach combines Markov decision processes and dynamic decision networks to learn from clinical data and develop complex plans via simulation of alternative sequential decision paths while capturing the sometimes conflicting, sometimes synergistic interactions of various components in the healthcare system. It can operate in partially observable environments (in the case of missing observations or data) by maintaining belief states about patient health status and functions as an online agent that plans and re-plans. This framework was evaluated using real patient data from an electronic health record. Such an AI framework easily outperforms the current treatment-as-usual (TAU) case-rate/fee-for-service models of healthcare (Cost per Unit Change: $189 vs. $497) while obtaining a 30-35% increase in patient outcomes. Tweaking certain model parameters further enhances this advantage, obtaining roughly 50% more improvement for roughly half the costs. Given careful design and problem formulation, an AI simulation framework can approximate optimal decisions even in complex and uncertain environments. Future work is described that outlines potential lines of research and integration of machine learning algorithms for personalized medicine.


Heteroscedastic Relevance Vector Machine

arXiv.org Machine Learning

In this work we propose a heteroscedastic generalization to RVM, a fast Bayesian framework for regression, based on some recent similar works. We use variational approximation and expectation propagation to tackle the problem. The work is still under progress and we are examining the results and comparing with the previous works.


Spectral Clustering Based on Local PCA

arXiv.org Machine Learning

We propose a spectral clustering method based on local principal components analysis (PCA). After performing local PCA in selected neighborhoods, the algorithm builds a nearest neighbor graph weighted according to a discrepancy between the principal subspaces in the neighborhoods, and then applies spectral clustering. As opposed to standard spectral methods based solely on pairwise distances between points, our algorithm is able to resolve intersections. We establish theoretical guarantees for simpler variants within a prototypical mathematical framework for multi-manifold clustering, and evaluate our algorithm on various simulated data sets.


Syntactic Analysis Based on Morphological Characteristic Features of the Romanian Language

arXiv.org Artificial Intelligence

This paper refers to the syntactic analysis of phrases in Romanian, as an important process of natural language processing. We will suggest a real-time solution, based on the idea of using some words or groups of words that indicate grammatical category; and some specific endings of some parts of sentence. Our idea is based on some characteristics of the Romanian language, where some prepositions, adverbs or some specific endings can provide a lot of information about the structure of a complex sentence. Such characteristics can be found in other languages, too, such as French. Using a special grammar, we developed a system (DIASEXP) that can perform a dialogue in natural language with assertive and interogative sentences about a "story" (a set of sentences describing some events from the real life).


Distance Metric Learning for Kernel Machines

arXiv.org Machine Learning

Recent work in metric learning has significantly improved the state-of-the-art in k-nearest neighbor classification. Support vector machines (SVM), particularly with RBF kernels, are amongst the most popular classification algorithms that uses distance metrics to compare examples. This paper provides an empirical analysis of the efficacy of three of the most popular Mahalanobis metric learning algorithms as pre-processing for SVM training. We show that none of these algorithms generate metrics that lead to particularly satisfying improvements for SVM-RBF classification. As a remedy we introduce support vector metric learning (SVML), a novel algorithm that seamlessly combines the learning of a Mahalanobis metric with the training of the RBF-SVM parameters. We demonstrate the capabilities of SVML on nine benchmark data sets of varying sizes and difficulties. In our study, SVML outperforms all alternative state-of-the-art metric learning algorithms in terms of accuracy and establishes itself as a serious alternative to the standard Euclidean metric with model selection by cross validation.


Linear Bandits in High Dimension and Recommendation Systems

arXiv.org Machine Learning

A large number of online services provide automated recommendations to help users to navigate through a large collection of items. New items (products, videos, songs, advertisements) are suggested on the basis of the user's past history and --when available-- her demographic profile. Recommendations have to satisfy the dual goal of helping the user to explore the space of available items, while allowing the system to probe the user's preferences. We model this trade-off using linearly parametrized multi-armed bandits, propose a policy and prove upper and lower bounds on the cumulative "reward" that coincide up to constants in the data poor (high-dimensional) regime. Prior work on linear bandits has focused on the data rich (low-dimensional) regime and used cumulative "risk" as the figure of merit. For this data rich regime, we provide a simple modification for our policy that achieves near-optimal risk performance under more restrictive assumptions on the geometry of the problem. We test (a variation of) the scheme used for establishing achievability on the Netflix and MovieLens datasets and obtain good agreement with the qualitative predictions of the theory we develop.


A Logic Programming Approach to Integration Network Inference

arXiv.org Artificial Intelligence

The discovery, representation and reconstruction of (technical) integration networks from Network Mining (NM) raw data is a difficult problem for enterprises. This is due to large and complex IT landscapes within and across enterprise boundaries, heterogeneous technology stacks, and fragmented data. To remain competitive, visibility into the enterprise and partner IT networks on different, interrelated abstraction levels is desirable. We present an approach to represent and reconstruct the integration networks from NM raw data using logic programming based on first-order logic. The raw data expressed as integration network model is represented as facts, on which rules are applied to reconstruct the network. We have built a system that is used to apply this approach to real-world enterprise landscapes and we report on our experience with this system.


A Randomized Mirror Descent Algorithm for Large Scale Multiple Kernel Learning

arXiv.org Machine Learning

We consider the problem of simultaneously learning to linearly combine a very large number of kernels and learn a good predictor based on the learnt kernel. When the number of kernels $d$ to be combined is very large, multiple kernel learning methods whose computational cost scales linearly in $d$ are intractable. We propose a randomized version of the mirror descent algorithm to overcome this issue, under the objective of minimizing the group $p$-norm penalized empirical risk. The key to achieve the required exponential speed-up is the computationally efficient construction of low-variance estimates of the gradient. We propose importance sampling based estimates, and find that the ideal distribution samples a coordinate with a probability proportional to the magnitude of the corresponding gradient. We show the surprising result that in the case of learning the coefficients of a polynomial kernel, the combinatorial structure of the base kernels to be combined allows the implementation of sampling from this distribution to run in $O(\log(d))$ time, making the total computational cost of the method to achieve an $\epsilon$-optimal solution to be $O(\log(d)/\epsilon^2)$, thereby allowing our method to operate for very large values of $d$. Experiments with simulated and real data confirm that the new algorithm is computationally more efficient than its state-of-the-art alternatives.


Dynamical Models and Tracking Regret in Online Convex Programming

arXiv.org Machine Learning

This paper describes a new online convex optimization method which incorporates a family of candidate dynamical models and establishes novel tracking regret bounds that scale with the comparator's deviation from the best dynamical model in this family. Previous online optimization methods are designed to have a total accumulated loss comparable to that of the best comparator sequence, and existing tracking or shifting regret bounds scale with the overall variation of the comparator sequence. In many practical scenarios, however, the environment is nonstationary and comparator sequences with small variation are quite weak, resulting in large losses. The proposed Dynamic Mirror Descent method, in contrast, can yield low regret relative to highly variable comparator sequences by both tracking the best dynamical model and forming predictions based on that model. This concept is demonstrated empirically in the context of sequential compressive observations of a dynamic scene and tracking a dynamic social network.