Plotting

 North America


General combination rules for qualitative and quantitative beliefs

arXiv.org Artificial Intelligence

Martin and Osswald \cite{Martin07} have recently proposed many generalizations of combination rules on quantitative beliefs in order to manage the conflict and to consider the specificity of the responses of the experts. Since the experts express themselves usually in natural language with linguistic labels, Smarandache and Dezert \cite{Li07} have introduced a mathematical framework for dealing directly also with qualitative beliefs. In this paper we recall some element of our previous works and propose the new combination rules, developed for the fusion of both qualitative or quantitative beliefs.


High Dimensional Nonlinear Learning using Local Coordinate Coding

arXiv.org Machine Learning

This paper introduces a new method for semi-supervised learning on high dimensional nonlinear manifolds, which includes a phase of unsupervised basis learning and a phase of supervised function learning. The learned bases provide a set of anchor points to form a local coordinate system, such that each data point $x$ on the manifold can be locally approximated by a linear combination of its nearby anchor points, with the linear weights offering a local-coordinate coding of $x$. We show that a high dimensional nonlinear function can be approximated by a global linear function with respect to this coding scheme, and the approximation quality is ensured by the locality of such coding. The method turns a difficult nonlinear learning problem into a simple global linear learning problem, which overcomes some drawbacks of traditional local learning methods. The work also gives a theoretical justification to the empirical success of some biologically-inspired models using sparse coding of sensory data, since a local coding scheme must be sufficiently sparse. However, sparsity does not always satisfy locality conditions, and can thus possibly lead to suboptimal results. The properties and performances of the method are empirically verified on synthetic data, handwritten digit classification, and object recognition tasks.


A Novel Two-Stage Dynamic Decision Support based Optimal Threat Evaluation and Defensive Resource Scheduling Algorithm for Multi Air-borne threats

arXiv.org Artificial Intelligence

This paper presents a novel two-stage flexible dynamic decision support based optimal threat evaluation and defensive resource scheduling algorithm for multi-target air-borne threats. The algorithm provides flexibility and optimality by swapping between two objective functions, i.e. the preferential and subtractive defense strategies as and when required. To further enhance the solution quality, it outlines and divides the critical parameters used in Threat Evaluation and Weapon Assignment (TEWA) into three broad categories (Triggering, Scheduling and Ranking parameters). Proposed algorithm uses a variant of many-to-many Stable Marriage Algorithm (SMA) to solve Threat Evaluation (TE) and Weapon Assignment (WA) problem. In TE stage, Threat Ranking and Threat-Asset pairing is done. Stage two is based on a new flexible dynamic weapon scheduling algorithm, allowing multiple engagements using shoot-look-shoot strategy, to compute near-optimal solution for a range of scenarios. Analysis part of this paper presents the strengths and weaknesses of the proposed algorithm over an alternative greedy algorithm as applied to different offline scenarios.


Towards the Patterns of Hard CSPs with Association Rule Mining

arXiv.org Artificial Intelligence

The hardness of finite domain Constraint Satisfaction Problems (CSPs) is a very important research area in Constraint Programming (CP) community. However, this problem has not yet attracted much attention from the researchers in the association rule mining community. As a popular data mining technique, association rule mining has an extremely wide application area and it has already been successfully applied to many interdisciplines. In this paper, we study the association rule mining techniques and propose a cascaded approach to extract the interesting patterns of the hard CSPs. As far as we know, this problem is investigated with the data mining techniques for the first time. Specifically, we generate the random CSPs and collect their characteristics by solving all the CSP instances, and then apply the data mining techniques on the data set and further to discover the interesting patterns of the hardness of the randomly generated CSPs


Concept-based Recommendations for Internet Advertisement

arXiv.org Artificial Intelligence

The problem of detecting terms that can be interesting to the advertiser is considered. If a company has already bought some advertising terms which describe certain services, it is reasonable to find out the terms bought by competing companies. A part of them can be recommended as future advertising terms to the company. The goal of this work is to propose better interpretable recommendations based on FCA and association rules.


Node discovery in a networked organization

arXiv.org Artificial Intelligence

In this paper, I present a method to solve a node discovery problem in a networked organization. Covert nodes refer to the nodes which are not observable directly. They affect social interactions, but do not appear in the surveillance logs which record the participants of the social interactions. Discovering the covert nodes is defined as identifying the suspicious logs where the covert nodes would appear if the covert nodes became overt. A mathematical model is developed for the maximal likelihood estimation of the network behind the social interactions and for the identification of the suspicious logs. Precision, recall, and F measure characteristics are demonstrated with the dataset generated from a real organization and the computationally synthesized datasets. The performance is close to the theoretical limit for any covert nodes in the networks of any topologies and sizes if the ratio of the number of observation to the number of possible communication patterns is large.


On empirical meaning of randomness with respect to a real parameter

arXiv.org Artificial Intelligence

We study the empirical meaning of randomness with respect to a family of probability distributions $P_\theta$, where $\theta$ is a real parameter, using algorithmic randomness theory. In the case when for a computable probability distribution $P_\theta$ an effectively strongly consistent estimate exists, we show that the Levin's a priory semicomputable semimeasure of the set of all $P_\theta$-random sequences is positive if and only if the parameter $\theta$ is a computable real number. The different methods for generating ``meaningful'' $P_\theta$-random sequences with noncomputable $\theta$ are discussed.


On landmark selection and sampling in high-dimensional data analysis

arXiv.org Machine Learning

In recent years, the spectral analysis of appropriately defined kernel matrices has emerged as a principled way to extract the low-dimensional structure often prevalent in high-dimensional data. Here we provide an introduction to spectral methods for linear and nonlinear dimension reduction, emphasizing ways to overcome the computational limitations currently faced by practitioners with massive datasets. In particular, a data subsampling or landmark selection process is often employed to construct a kernel based on partial information, followed by an approximate spectral analysis termed the Nystrom extension. We provide a quantitative framework to analyse this procedure, and use it to demonstrate algorithmic performance bounds on a range of practical approaches designed to optimize the landmark selection process. We compare the practical implications of these bounds by way of real-world examples drawn from the field of computer vision, whereby low-dimensional manifold structure is shown to emerge from high-dimensional video data streams.


Solving Dynamic Constraint Satisfaction Problems by Identifying Stable Features

AAAI Conferences

This paper presents a new analysis of dynamic constraint satisfaction problems (DCSPs) with finite domains and a new approach to solving them. We first show that even very small changes in a CSP, in the form of addition of constraints or changes in constraint relations, can have profound effects on search performance. These effects are reflected in the amenability of the problem to different forms of heuristic action as well as overall quality of search. In addition, classical DCSP methods perform poorly on these problems because there are sometimes no solutions similar to the original one found. We then show that the same changes do not markedly affect the locations of the major sources of contention in the problem. A technique for iterated sampling that performs a careful assessment of this property and uses the information during subsequent search, performs well even when it only uses information based on the original problem in the DCSP sequence. The result is a new approach to solving DCSPs that is based on a robust strategy for ordering variables rather than on robust solutions.


Semi-Supervised Classification using Sparse Gaussian Process Regression

AAAI Conferences

Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.