Not enough data to create a plot.
Try a different view from the menu above.
North America
Variational approximation for heteroscedastic linear models and matching pursuit algorithms
Nott, David J., Tran, Minh-Ngoc, Leng, Chenlei
Modern statistical applications involving large data sets have focused attention on statistical methodologies which are both efficient computationally and able to deal with the screening of large numbers of different candidate models. Here we consider computationally efficient variational Bayes approaches to inference in high-dimensional heteroscedastic linear regression, where both the mean and variance are described in terms of linear functions of the predictors and where the number of predictors can be larger than the sample size. We derive a closed form variational lower bound on the log marginal likelihood useful for model selection, and propose a novel fast greedy search algorithm on the model space which makes use of one step optimization updates to the variational lower bound in the current model for screening large numbers of candidate predictor variables for inclusion/exclusion in a computationally thrifty way. We show that the model search strategy we suggest is related to widely used orthogonal matching pursuit algorithms for model search but yields a framework for potentially extending these algorithms to more complex models. The methodology is applied in simulations and in two real examples involving prediction for food constituents using NIR technology and prediction of disease progression in diabetes.
A hybrid model for bankruptcy prediction using genetic algorithm, fuzzy c-means and mars
Martin, A., Gayathri, V., Saranya, G., Gayathri, P., Venkatesan, Prasanna
Bankruptcy prediction is very important for all the organization since it affects the economy and rise many social problems with high costs. There are large number of techniques have been developed to predict the bankruptcy, which helps the decision makers such as investors and financial analysts. One of the bankruptcy prediction models is the hybrid model using Fuzzy C-means clustering and MARS, which uses static ratios taken from the bank financial statements for prediction, which has its own theoretical advantages. The performance of existing bankruptcy model can be improved by selecting the best features dynamically depend on the nature of the firm. This dynamic selection can be accomplished by Genetic Algorithm and it improves the performance of prediction model.
Back and Forth Between Rules and SE-Models (Extended Version)
Rules in logic programming encode information about mutual interdependencies between literals that is not captured by any of the commonly used semantics. This information becomes essential as soon as a program needs to be modified or further manipulated. We argue that, in these cases, a program should not be viewed solely as the set of its models. Instead, it should be viewed and manipulated as the set of sets of models of each rule inside it. With this in mind, we investigate and highlight relations between the SE-model semantics and individual rules. We identify a set of representatives of rule equivalence classes induced by SE-models, and so pinpoint the exact expressivity of this semantics with respect to a single rule. We also characterise the class of sets of SE-interpretations representable by a single rule. Finally, we discuss the introduction of two notions of equivalence, both stronger than strong equivalence [1] and weaker than strong update equivalence [2], which seem more suitable whenever the dependency information found in rules is of interest.
Practical inventory routing: A problem definition and an optimization method
Geiger, Martin Josef, Sevaux, Marc
The global objective of this work is to provide practical optimization methods to companies involved in inventory routing problems, taking into account this new type of data. Also, companies are sometimes not able to deal with changing plans every period and would like to adopt regular structures for serving customers.
Neyman-Pearson classification, convexity and stochastic constraints
Motivated by problems of anomaly detection, this paper implements the Neyman-Pearson paradigm to deal with asymmetric errors in binary classification with a convex loss. Given a finite collection of classifiers, we combine them and obtain a new classifier that satisfies simultaneously the two following properties with high probability: (i) its probability of type I error is below a pre-specified level and (ii), it has probability of type II error close to the minimum possible. The proposed classifier is obtained by solving an optimization problem with an empirical objective and an empirical constraint. New techniques to handle such problems are developed and have consequences on chance constrained programming.
Universal Higher Order Grammar
We examine the class of languages that can be defined entirely in terms of provability in an extension of the sorted type theory (Ty_n) by embedding the logic of phonologies, without introduction of special types for syntactic entities. This class is proven to precisely coincide with the class of logically closed languages that may be thought of as functions from expressions to sets of logically equivalent Ty_n terms. For a specific sub-class of logically closed languages that are described by finite sets of rules or rule schemata, we find effective procedures for building a compact Ty_n representation, involving a finite number of axioms or axiom schemata. The proposed formalism is characterized by some useful features unavailable in a two-component architecture of a language model. A further specialization and extension of the formalism with a context type enable effective account of intensional and dynamic semantics.
Randomized algorithms for statistical image analysis and site percolation on square lattices
Langovoy, Mikhail A., Wittich, Olaf
We propose a novel probabilistic method for detection of objects in noisy images. The method uses results from percolation and random graph theories. We present an algorithm that allows to detect objects of unknown shapes in the presence of random noise. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. We prove results on consistency and algorithmic complexity of our procedure.
Detection of objects in noisy images based on percolation theory
Davies, Patrick Laurie, Langovoy, Mikhail A., Wittich, Olaf
We propose a novel statistical method for detection of objects in noisy images. The method uses results from percolation and random graph theories. We present an algorithm that allows to detect objects of unknown shapes in the presence of nonparametric noise of unknown level. The noise density is assumed to be unknown and can be very irregular. Our procedure substantially differs from wavelets-based algorithms. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. We prove results on consistency and algorithmic complexity of our procedure.
Improved RIP Analysis of Orthogonal Matching Pursuit
Orthogonal Matching Pursuit (OMP) has long been considered a powerful heuristic for attacking compressive sensing problems; however, its theoretical development is, unfortunately, somewhat lacking. This paper presents an improved Restricted Isometry Property (RIP) based performance guarantee for T-sparse signal reconstruction that asymptotically approaches the conjectured lower bound given in Davenport et al. We also further extend the state-of-the-art by deriving reconstruction error bounds for the case of general non-sparse signals subjected to measurement noise. We then generalize our results to the case of K-fold Orthogonal Matching Pursuit (KOMP). We finish by presenting an empirical analysis suggesting that OMP and KOMP outperform other compressive sensing algorithms in average case scenarios. This turns out to be quite surprising since RIP analysis (i.e. worst case scenario) suggests that these matching pursuits should perform roughly T^0.5 times worse than convex optimization, CoSAMP, and Iterative Thresholding.
Active Clustering: Robust and Efficient Hierarchical Clustering using Adaptively Selected Similarities
Eriksson, Brian, Dasarathy, Gautam, Singh, Aarti, Nowak, Robert
Hierarchical clustering based on pairwise similarities is a common tool used in a broad range of scientific applications. However, in many problems it may be expensive to obtain or compute similarities between the items to be clustered. This paper investigates the hierarchical clustering of N items based on a small subset of pairwise similarities, significantly less than the complete set of N(N-1)/2 similarities. First, we show that if the intracluster similarities exceed intercluster similarities, then it is possible to correctly determine the hierarchical clustering from as few as 3N log N similarities. We demonstrate this order of magnitude savings in the number of pairwise similarities necessitates sequentially selecting which similarities to obtain in an adaptive fashion, rather than picking them at random. We then propose an active clustering method that is robust to a limited fraction of anomalous similarities, and show how even in the presence of these noisy similarity values we can resolve the hierarchical clustering using only O(N log^2 N) pairwise similarities.