Plotting

 North America


Logic and Databases Past, Present, and Future

AI Magazine

At a workshop held in Toulouse, France, in 1977, Gallaire, Minker, and Nicolas stated that logic and databases was a field in its own right. This was the first time that this designation was made. The impetus for it started approximately 20 years ago in 1976 when I visited Gallaire and Nicolas in Toulouse, France. In this article, I provide an assessment about what has been achieved in the 20 years since the field started as a distinct discipline. I review developments in the field, assess contributions, consider the status of implementations of deductive databases, and discuss future work needed in deductive databases.


The Sixth International Workshop on Nonmonotonic Reasoning

AI Magazine

Intelligence (AAAI), was held 10 to 12 have now become particularly June 1996 in Timberline, Oregon. Finally, we Netherlands, the United States, and would like to acknowledge the support Venezuela. The papers described new of AAAI for student travel funds. Moises Goldszmidt received his Ph.D. in His email address is moises@ Mathematical Institute in Russia.


Towards Flexible Teamwork

Journal of Artificial Intelligence Research

Many AI researchers are today striving to build agent teams for complex, dynamic multi-agent domains, with intended applications in arenas such as education, training, entertainment, information integration, and collective robotics. Unfortunately, uncertainties in these complex, dynamic domains obstruct coherent teamwork. In particular, team members often encounter differing, incomplete, and possibly inconsistent views of their environment. Furthermore, team members can unexpectedly fail in fulfilling responsibilities or discover unexpected opportunities. Highly flexible coordination and communication is key in addressing such uncertainties. Simply fitting individual agents with precomputed coordination plans will not do, for their inflexibility can cause severe failures in teamwork, and their domain-specificity hinders reusability. Our central hypothesis is that the key to such flexibility and reusability is providing agents with general models of teamwork. Agents exploit such models to autonomously reason about coordination and communication, providing requisite flexibility. Furthermore, the models enable reuse across domains, both saving implementation effort and enforcing consistency. This article presents one general, implemented model of teamwork, called STEAM. The basic building block of teamwork in STEAM is joint intentions (Cohen & Levesque, 1991b); teamwork in STEAM is based on agents' building up a (partial) hierarchy of joint intentions (this hierarchy is seen to parallel Grosz & Kraus's partial SharedPlans, 1996). Furthermore, in STEAM, team members monitor the team's and individual members' performance, reorganizing the team as necessary. Finally, decision-theoretic communication selectivity in STEAM ensures reduction in communication overheads of teamwork, with appropriate sensitivity to the environmental conditions. This article describes STEAM's application in three different complex domains, and presents detailed empirical results.


Identifying Hierarchical Structure in Sequences: A linear-time algorithm

Journal of Artificial Intelligence Research

SEQUITUR is an algorithm that infers a hierarchical structure from a sequence of discrete symbols by replacing repeated phrases with a grammatical rule that generates the phrase, and continuing this process recursively. The result is a hierarchical representation of the original sequence, which offers insights into its lexical structure. The algorithm is driven by two constraints that reduce the size of the grammar, and produce structure as a by-product. SEQUITUR breaks new ground by operating incrementally. Moreover, the method's simple structure permits a proof that it operates in space and time that is linear in the size of the input. Our implementation can process 50,000 symbols per second and has been applied to an extensive range of real world sequences.


Eight Maximal Tractable Subclasses of Allen's Algebra with Metric Time

Journal of Artificial Intelligence Research

This paper combines two important directions of research in temporal resoning: that of finding maximal tractable subclasses of Allen's interval algebra, and that of reasoning with metric temporal information. Eight new maximal tractable subclasses of Allen's interval algebra are presented, some of them subsuming previously reported tractable algebras. The algebras allow for metric temporal constraints on interval starting or ending points, using the recent framework of Horn DLRs. Two of the algebras can express the notion of sequentiality between intervals, being the first such algebras admitting both qualitative and metric time.


LIFESTYLE FINDER: Intelligent User Profiling Using Large-Scale Demographic Data

AI Magazine

A number of approaches have been advanced for taking data about a user's likes and dislikes and generating a general profile of the user. These profiles can be used to retrieve documents matching user interests; recommend music, movies, or other similar products; or carry out other tasks in a specialized fashion. This article presents a fundamentally new method for generating user profiles that takes advantage of a large-scale database of demographic data. These data are used to generalize user-specified data along the patterns common across the population, including areas not represented in the user's original data. I describe the method in detail and present its implementation in the LIFESTYLE FINDER agent, an internet-based experiment testing our approach on more than 20,006 users worldwide.


The Hidden Web

AI Magazine

The difficulty of finding information on the World Wide Web by browsing hypertext documents has led to the development and deployment of various search engines and indexing techniques. However, many information-gathering tasks are better handled by finding a referral to a human expert rather than by simply interacting with online information sources. A personal referral allows a user to judge the quality of the information he or she is receiving as well as to potentially obtain information that is deliberately not made public. The process of finding an expert who is both reliable and likely to respond to the user can be viewed as a search through the net-work of social relationships between individuals as opposed to a search through the network of hypertext documents. The goal of the REFERRAL WEB Project is to create models of social networks by data mining the web and develop tools that use the models to assist in locating experts and related information search and evaluation tasks.


Moving Up the Information Food Chain: Deploying Softbots on the World Wide Web

AI Magazine

I view the World Wide Web as an information food chain. The maze of pages and hyperlinks that comprise the Web are at the very bottom of the chain. The WEBCRAWLERs and ALTAVISTAs of the world are information herbivores; they graze on Web pages and regurgitate them as searchable indices. Today, most Web users feed near the bottom of the information food chain, but the time is ripe to move up. Since 1991, we have been building information carnivores, which intelligently hunt and feast on herbivores in UNIX, on the Internet, and on the Web. Information carnivores will become increasingly critical as the Web continues to grow and as more naive users are exposed to its chaotic jumble.


Question Answering from Frequently Asked Question Files: Experiences with the FAQ FINDER System

AI Magazine

This article describes FAQ FINDER, a natural language question-answering system that uses files of frequently asked questions as its knowledge base. Unlike AI question-answering systems that focus on the generation of new answers, FAQ FINDER retrieves existing ones found in frequently asked question files. Unlike information-retrieval approaches that rely on a purely lexical metric of similarity between query and document, FAQ FINDER uses a semantic knowledge base (WORDNET) to improve its ability to match question and answer. We include results from an evaluation of the system's performance and show that a combination of semantic and statistical techniques works better than any single approach.


Applied AI News

AI Magazine

The mail sorting, folding, and inserting mobile personal communications goal is to facilitate the design of exhaust equipment, has implemented an expert network that will permit any mufflers of inlet manifolds in system solution at the core of its type of wireless telephone transmission--voice, hours instead of days. Air Force Manufacturing Technology service data from which common GKIS Intelligent Systems (Houston, Directorate (MANTECH) (Wright-Patterson knowledge--such as service procedures, Tex.) has developed the It is process to prove out and select Intergraph (Huntsville, Ala.), a designed to mine environmental optimal new concepts. The company has Industries (Phenix City, Ala.), a decisions related to advanced launched Project Solomon to upgrade textile manufacturer, is using an automated strike-warfare technology. The Workers' Compensation Fund uses advanced vision technology, neural knowledge-based software. The system compares workers' to develop a fuzzy logic-based solution off-quality production.