Not enough data to create a plot.
Try a different view from the menu above.
British Columbia
Adversarially Robust Multi-task Representation Learning
We study adversarially robust transfer learning, wherein, given labeled data on multiple (source) tasks, the goal is to train a model with small robust error on a previously unseen (target) task. In particular, we consider a multi-task representation learning (MTRL) setting, i.e., we assume that the source and target tasks admit a simple (linear) predictor on top of a shared representation (e.g., the final hidden layer of a deep neural network). In this general setting, we provide rates on the excess adversarial (transfer) risk for Lipschitz losses and smooth nonnegative losses. These rates show that learning a representation using adversarial training on diverse tasks helps protect against inference-time attacks in data-scarce environments. Additionally, we provide novel rates for the single-task setting.
9dc5accb1e4f4a9798eae145f2e4869b-Paper-Conference.pdf
Reinforcement learning (RL) algorithms face two distinct challenges: learning effective representations of past and present observations, and determining how actions influence future returns. Both challenges involve modeling long-term dependencies. The Transformer architecture has been very successful to solve problems that involve long-term dependencies, including in the RL domain. However, the underlying reason for the strong performance of Transformer-based RL methods remains unclear: is it because they learn effective memory, or because they perform effective credit assignment? After introducing formal definitions of memory length and credit assignment length, we design simple configurable tasks to measure these distinct quantities. Our empirical results reveal that Transformers can enhance the memory capability of RL algorithms, scaling up to tasks that require memorizing observations 1500 steps ago. However, Transformers do not improve long-term credit assignment. In summary, our results provide an explanation for the success of Transformers in RL, while also highlighting an important area for future research and benchmark design.
Exploitation of a Latent Mechanism in Graph Contrastive Learning: Representation Scattering
Graph Contrastive Learning (GCL) has emerged as a powerful approach for generating graph representations without the need for manual annotation. Most advanced GCL methods fall into three main frameworks: node discrimination, group discrimination, and bootstrapping schemes, all of which achieve comparable performance. However, the underlying mechanisms and factors that contribute to their effectiveness are not yet fully understood. In this paper, we revisit these frameworks and reveal a common mechanism--representation scattering--that significantly enhances their performance. Our discovery highlights an essential feature of GCL and unifies these seemingly disparate methods under the concept of representation scattering. To leverage this insight, we introduce Scattering Graph Representation Learning (SGRL), a novel framework that incorporates a new representation scattering mechanism designed to enhance representation diversity through a center-away strategy. Additionally, consider the interconnected nature of graphs, we develop a topology-based constraint mechanism that integrates graph structural properties with representation scattering to prevent excessive scattering. We extensively evaluate SGRL across various downstream tasks on benchmark datasets, demonstrating its efficacy and superiority over existing GCL methods. Our findings underscore the significance of representation scattering in GCL and provide a structured framework for harnessing this mechanism to advance graph representation learning.
MassSpecGym: A benchmark for the discovery and identification of molecules Roman Bushuiev
The discovery and identification of molecules in biological and environmental samples is crucial for advancing biomedical and chemical sciences. Tandem mass spectrometry (MS/MS) is the leading technique for high-throughput elucidation of molecular structures. However, decoding a molecular structure from its mass spectrum is exceptionally challenging, even when performed by human experts. As a result, the vast majority of acquired MS/MS spectra remain uninterpreted, thereby limiting our understanding of the underlying (bio)chemical processes. Despite decades of progress in machine learning applications for predicting molecular structures from MS/MS spectra, the development of new methods is severely hindered by the lack of standard datasets and evaluation protocols. To address this problem, we propose MassSpecGym - the first comprehensive benchmark for the discovery and identification of molecules from MS/MS data. Our benchmark comprises the largest publicly available collection of high-quality labeled MS/MS spectra and defines three MS/MS annotation challenges: de novo molecular structure generation, molecule retrieval, and spectrum simulation. It includes new evaluation metrics and a generalization-demanding data split, therefore standardizing the MS/MS annotation tasks and rendering the problem accessible to the broad machine learning community.
Recovering from Out-of-sample States via Inverse Dynamics in Offline Reinforcement Learning College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics
We deal with the state distributional shift problem commonly encountered in offline reinforcement learning during test, where the agent tends to take unreliable actions at out-of-sample (unseen) states. Our idea is to encourage the agent to follow the so called state recovery principle when taking actions, i.e., besides long-term return, the immediate consequences of the current action should also be taken into account and those capable of recovering the state distribution of the behavior policy are preferred. For this purpose, an inverse dynamics model is learned and employed to guide the state recovery behavior of the new policy. Theoretically, we show that the proposed method helps aligning the transited state distribution of the new policy with the offline dataset at out-of-sample states, without the need of explicitly predicting the transited state distribution, which is usually difficult in high-dimensional and complicated environments. The effectiveness and feasibility of the proposed method is demonstrated with the state-of-the-art performance on the general offline RL benchmarks.
Zero-shot Knowledge Transfer via Adversarial Belief Matching
Paul Micaelli, Amos J. Storkey
Performing knowledge transfer from a large teacher network to a smaller student is a popular task in modern deep learning applications. However, due to growing dataset sizes and stricter privacy regulations, it is increasingly common not to have access to the data that was used to train the teacher. We propose a novel method which trains a student to match the predictions of its teacher without using any data or metadata. We achieve this by training an adversarial generator to search for images on which the student poorly matches the teacher, and then using them to train the student. Our resulting student closely approximates its teacher for simple datasets like SVHN, and on CIFAR10 we improve on the stateof-the-art for few-shot distillation (with 100 images per class), despite using no data. Finally, we also propose a metric to quantify the degree of belief matching between teacher and student in the vicinity of decision boundaries, and observe a significantly higher match between our zero-shot student and the teacher, than between a student distilled with real data and the teacher.