Not enough data to create a plot.
Try a different view from the menu above.
North Brabant
Dynamic Neural Regeneration: Enhancing Deep Learning Generalization on Small Datasets Eindhoven University of Technology
The efficacy of deep learning techniques is contingent upon access to large volumes of data (labeled or unlabeled). However, in practical domains such as medical applications, data availability is often limited. This presents a significant challenge: How can we effectively train deep neural networks on relatively small datasets while improving generalization? Recent works have explored evolutionary or iterative training paradigms, which reinitialize a subset of parameters to enhance generalization performance for small datasets. However, these methods typically rely on randomly selected parameter subsets and maintain fixed masks throughout training, potentially leading to suboptimal outcomes. Inspired by neurogenesis in the brain, we propose a novel iterative training framework, Dynamic Neural Regeneration (DNR), that employs a data-aware dynamic masking scheme to eliminate redundant connections by estimating their significance. This approach increases the model's capacity for further learning through random weight reinitialization. Experimental results demonstrate that our approach outperforms existing methods in accuracy and robustness, highlighting its potential for real-world applications where data collection is challenging.
Kristian Kersting Eindhoven University of Technology
Structural causal models (SCMs) are a powerful tool for understanding the complex causal relationships that underlie many real-world systems. As these systems grow in size, the number of variables and complexity of interactions between them does, too. Thus, becoming convoluted and difficult to analyze. This is particularly true in the context of machine learning and artificial intelligence, where an ever increasing amount of data demands for new methods to simplify and compress large scale SCM. While methods for marginalizing and abstracting SCM already exist today, they may destroy the causality of the marginalized model. To alleviate this, we introduce the concept of consolidating causal mechanisms to transform large-scale SCM while preserving consistent interventional behaviour. We show consolidation is a powerful method for simplifying SCM, discuss reduction of computational complexity and give a perspective on generalizing abilities of consolidated SCM.
Dynamic Submodular Maximization (Supplementary Material) Morteza Monemizadeh Department of Mathematics and Computer Science TU Eindhoven, the Netherlands m.monemizadeh@tue.nl
In this section we prove the following theorem. Theorem 1 Suppose we start with an empty set V. Let us first consider the offline scenario. We later show how to handle insertion and deletion of elements. Our algorithm (that we call it Algorithm Sampling) is a refinement of Algorithm [LV19]. OP T. We prove it in this section for the sake of completeness.
RoboCup@Home 2024 OPL Winner NimbRo: Anthropomorphic Service Robots using Foundation Models for Perception and Planning
Memmesheimer, Raphael, Nogga, Jan, Pรคtzold, Bastian, Kruzhkov, Evgenii, Bultmann, Simon, Schreiber, Michael, Bode, Jonas, Karacora, Bertan, Park, Juhui, Savinykh, Alena, Behnke, Sven
We present the approaches and contributions of the winning team NimbRo@Home at the RoboCup@Home 2024 competition in the Open Platform League held in Eindhoven, NL. Further, we describe our hardware setup and give an overview of the results for the task stages and the final demonstration. For this year's competition, we put a special emphasis on open-vocabulary object segmentation and grasping approaches that overcome the labeling overhead of supervised vision approaches, commonly used in RoboCup@Home. We successfully demonstrated that we can segment and grasp non-labeled objects by text descriptions. Further, we extensively employed LLMs for natural language understanding and task planning. Throughout the competition, our approaches showed robustness and generalization capabilities. A video of our performance can be found online.
Kristian Kersting Eindhoven University of Technology
Structural causal models (SCMs) are a powerful tool for understanding the complex causal relationships that underlie many real-world systems. As these systems grow in size, the number of variables and complexity of interactions between them does, too. Thus, becoming convoluted and difficult to analyze. This is particularly true in the context of machine learning and artificial intelligence, where an ever increasing amount of data demands for new methods to simplify and compress large scale SCM. While methods for marginalizing and abstracting SCM already exist today, they may destroy the causality of the marginalized model. To alleviate this, we introduce the concept of consolidating causal mechanisms to transform large-scale SCM while preserving consistent interventional behaviour. We show consolidation is a powerful method for simplifying SCM, discuss reduction of computational complexity and give a perspective on generalizing abilities of consolidated SCM.
#RoboCup2024 โ daily digest: 20 July
This is the second of our daily digests from RoboCup2024 in Eindhoven, The Netherlands. If you missed the first digest, which gives some background to RoboCup, you can find it here. Competitions continued across all the leagues today, with participants vying for a place in Sunday's finals. The RoboCup@Work league focusses on robots in work-related scenarios, utilizing ideas and concepts from other RoboCup competitions to tackle open research challenges in industrial and service robotics. I arrived at the arena in time to catch the advanced navigation test.
#RoboCup2024 โ daily digest: 19 July
RoboCup is an international scientific initiative with the goal to advance the state of the art of intelligent robots. As part of this initiative, a series of competitions and events are held throughout the year. The main showcase event is an international affair with teams travelling from far and wide to put their machines through their paces. This year, RoboCup is being held in three arenas in the Genneper Parken, Eindhoven, The Netherlands. The organisers are expecting over 2,000 participants, from 45 different countries, with around 300 teams signed up to take part in the various competitions.
Re.Dis.Cover Place with Generative AI: Exploring the Experience and Design of City Wandering with Image-to-Image AI
Hung, Peng-Kai, Huang, Janet Yi-Ching, Wensveen, Stephan, Liang, Rung-Huei
The HCI field has demonstrated a growing interest in leveraging emerging technologies to enrich urban experiences. However, insufficient studies investigate the experience and design space of AI image technology (AIGT) applications for playful urban interaction, despite its widespread adoption. To explore this gap, we conducted an exploratory study involving four participants who wandered and photographed within Eindhoven Centre and interacted with an image-to-image AI. Preliminary findings present their observations, the effect of their familiarity with places, and how AIGT becomes an explorer's tool or co-speculator. We then highlight AIGT's capability of supporting playfulness, reimaginations, and rediscoveries of places through defamiliarizing and familiarizing cityscapes. Additionally, we propose the metaphor AIGT as a 'tourist' to discuss its opportunities for engaging explorations and risks of stereotyping places. Collectively, our research provides initial empirical insights and design considerations, inspiring future HCI endeavors for creating urban play with generative AI.
Efficient Exploration in Average-Reward Constrained Reinforcement Learning: Achieving Near-Optimal Regret With Posterior Sampling
Provodin, Danil, Kaptein, Maurits, Pechenizkiy, Mykola
We present a new algorithm based on posterior sampling for learning in Constrained Markov Decision Processes (CMDP) in the infinite-horizon undiscounted setting. The algorithm achieves near-optimal regret bounds while being advantageous empirically compared to the existing algorithms. Our main theoretical result is a Bayesian regret bound for each cost component of $\tilde{O} (DS\sqrt{AT})$ for any communicating CMDP with $S$ states, $A$ actions, and diameter $D$. This regret bound matches the lower bound in order of time horizon $T$ and is the best-known regret bound for communicating CMDPs achieved by a computationally tractable algorithm. Empirical results show that our posterior sampling algorithm outperforms the existing algorithms for constrained reinforcement learning.