Not enough data to create a plot.
Try a different view from the menu above.
Denmark
ColdGANs: Taming Language GANs with Cautious Sampling Strategies Thomas Scialom, Paul-Alexis Dray
Training regimes based on Maximum Likelihood Estimation (MLE) suffer from known limitations, often leading to poorly generated text sequences. At the root of these limitations is the mismatch between training and inference, i.e. the so-called exposure bias, exacerbated by considering only the reference texts as correct, while in practice several alternative formulations could be as good. Generative Adversarial Networks (GANs) can mitigate those limitations but the discrete nature of text has hindered their application to language generation: the approaches proposed so far, based on Reinforcement Learning, have been shown to underperform MLE. Departing from previous works, we analyze the exploration step in GANs applied to text generation, and show how classical sampling results in unstable training. We propose to consider alternative exploration strategies in a GAN framework that we name ColdGANs, where we force the sampling to be close to the distribution modes to get smoother learning dynamics. For the first time, to the best of our knowledge, the proposed language GANs compare favorably to MLE, and obtain improvements over the state-of-the-art on three generative tasks, namely unconditional text generation, question generation, and abstractive summarization.
Feature-fortified Unrestricted Graph Alignment
The necessity to align two graphs, minimizing a structural distance metric, is prevalent in biology, chemistry, recommender systems, and social network analysis. Due to the problem's NP-hardness, prevailing graph alignment methods follow a modular and mediated approach, solving the problem restricted to the domain of intermediary graph representations or products like embeddings, spectra, and graph signals. Restricting the problem to this intermediate space may distort the original problem and are hence predisposed to miss high-quality solutions.
AI can spontaneously develop human-like communication, study finds
Artificial intelligence can spontaneously develop human-like social conventions, a study has found. The research, undertaken in collaboration between City St George's, University of London and the IT University of Copenhagen, suggests that when large language model (LLM) AI agents such as ChatGPT communicate in groups without outside involvement they can begin to adopt linguistic forms and social norms the same way that humans do when they socialise. The study's lead author, Ariel Flint Ashery, a doctoral researcher at City St George's, said the group's work went against the majority of research done into AI, as it treated AI as a social rather than solitary entity. "Most research so far has treated LLMs in isolation but real-world AI systems will increasingly involve many interacting agents," said Ashery. "We wanted to know: can these models coordinate their behaviour by forming conventions, the building blocks of a society? The answer is yes, and what they do together can't be reduced to what they do alone."
Revisiting K-mer Profile for Effective and Scalable Genome Representation Learning
Obtaining effective representations of DNA sequences is crucial for genome analysis. Metagenomic binning, for instance, relies on genome representations to cluster complex mixtures of DNA fragments from biological samples with the aim of determining their microbial compositions. In this paper, we revisit k-mer-based representations of genomes and provide a theoretical analysis of their use in representation learning. Based on the analysis, we propose a lightweight and scalable model for performing metagenomic binning at the genome read level, relying only on the k-mer compositions of the DNA fragments. We compare the model to recent genome foundation models and demonstrate that while the models are comparable in performance, the proposed model is significantly more effective in terms of scalability, a crucial aspect for performing metagenomic binning of real-world datasets.
Flex-MoE: Modeling Arbitrary Modality Combination via the Flexible Mixture-of-Experts
Multimodal learning has gained increasing importance across various fields, offering the ability to integrate data from diverse sources such as images, text, and personalized records, which are frequently observed in medical domains. However, in scenarios where some modalities are missing, many existing frameworks struggle to accommodate arbitrary modality combinations, often relying heavily on a single modality or complete data. This oversight of potential modality combinations limits their applicability in real-world situations. To address this challenge, we propose Flex-MoE (Flexible Mixture-of-Experts), a new framework designed to flexibly incorporate arbitrary modality combinations while maintaining robustness to missing data. The core idea of Flex-MoE is to first address missing modalities using a new missing modality bank that integrates observed modality combinations with the corresponding missing ones.
Epidemic Learning: Boosting Decentralized Learning with Randomized Communication
We present Epidemic Learning (EL), a simple yet powerful decentralized learning (DL) algorithm that leverages changing communication topologies to achieve faster model convergence compared to conventional DL approaches. At each round of EL, each node sends its model updates to a random sample of s other nodes (in a system of n nodes). We provide an extensive theoretical analysis of EL, demonstrating that its changing topology culminates in superior convergence properties compared to the state-of-the-art (static and dynamic) topologies. Considering smooth nonconvex loss functions, the number of transient iterations for EL, i.e., the rounds required to achieve asymptotic linear speedup, is in O(
Enhancing Feature Diversity Boosts Channel-Adaptive Vision Transformers
Multi-Channel Imaging (MCI) contains an array of challenges for encoding useful feature representations not present in traditional images. For example, images from two different satellites may both contain RGB channels, but the remaining channels can be different for each imaging source. Thus, MCI models must support a variety of channel configurations at test time. Recent work has extended traditional visual encoders for MCI, such as Vision Transformers (ViT), by supplementing pixel information with an encoding representing the channel configuration. However, these methods treat each channel equally, i.e., they do not consider the unique properties of each channel type, which can result in needless and potentially harmful redundancies in the learned features.
End-to-End Ontology Learning with Large Language Models
Ontologies are useful for automatic machine processing of domain knowledge as they represent it in a structured format. Yet, constructing ontologies requires substantial manual effort. To automate part of this process, large language models (LLMs) have been applied to solve various subtasks of ontology learning. However, this partial ontology learning does not capture the interactions between subtasks. We address this gap by introducing OLLM, a general and scalable method for building the taxonomic backbone of an ontology from scratch.
Deterministic Uncertainty Propagation for Improved Model-Based Offline Reinforcement Learning
Current approaches to model-based offline reinforcement learning often incorporate uncertainty-based reward penalization to address the distributional shift problem. These approaches, commonly known as pessimistic value iteration, use Monte Carlo sampling to estimate the Bellman target to perform temporal difference-based policy evaluation. We find out that the randomness caused by this sampling step significantly delays convergence. We present a theoretical result demonstrating the strong dependency of suboptimality on the number of Monte Carlo samples taken per Bellman target calculation. Our main contribution is a deterministic approximation to the Bellman target that uses progressive moment matching, a method developed originally for deterministic variational inference. The resulting algorithm, which we call Moment Matching Offline Model-Based Policy Optimization (MOMBO), propagates the uncertainty of the next state through a nonlinear Q-network in a deterministic fashion by approximating the distributions of hidden layer activations by a normal distribution. We show that it is possible to provide tighter guarantees for the suboptimality of MOMBO than the existing Monte Carlo sampling approaches. We also observe MOMBO to converge faster than these approaches in a large set of benchmark tasks.