Not enough data to create a plot.
Try a different view from the menu above.
Sulawesi
Multi-class Seismic Building Damage Assessment from InSAR Imagery using Quadratic Variational Causal Bayesian Inference
Interferometric Synthetic Aperture Radar (InSAR) technology uses satellite radar to detect surface deformation patterns and monitor earthquake impacts on buildings. While vital for emergency response planning, extracting multi-class building damage classifications from InSAR data faces challenges: overlapping damage signatures with environmental noise, computational complexity in multi-class scenarios, and the need for rapid regional-scale processing. Our novel multi-class variational causal Bayesian inference framework with quadratic variational bounds provides rigorous approximations while ensuring efficiency. By integrating InSAR observations with USGS ground failure models and building fragility functions, our approach separates building damage signals while maintaining computational efficiency through strategic pruning. Evaluation across five major earthquakes (Haiti 2021, Puerto Rico 2020, Zagreb 2020, Italy 2016, Ridgecrest 2019) shows improved damage classification accuracy (AUC: 0.94-0.96), achieving up to 35.7% improvement over existing methods. Our approach maintains high accuracy (AUC > 0.93) across all damage categories while reducing computational overhead by over 40% without requiring extensive ground truth data.
NusaAksara: A Multimodal and Multilingual Benchmark for Preserving Indonesian Indigenous Scripts
Adilazuarda, Muhammad Farid, Wijanarko, Musa Izzanardi, Susanto, Lucky, Nur'aini, Khumaisa, Wijaya, Derry, Aji, Alham Fikri
Indonesia is rich in languages and scripts. However, most NLP progress has been made using romanized text. In this paper, we present NusaAksara, a novel public benchmark for Indonesian languages that includes their original scripts. Our benchmark covers both text and image modalities and encompasses diverse tasks such as image segmentation, OCR, transliteration, translation, and language identification. Our data is constructed by human experts through rigorous steps. NusaAksara covers 8 scripts across 7 languages, including low-resource languages not commonly seen in NLP benchmarks. Although unsupported by Unicode, the Lampung script is included in this dataset. We benchmark our data across several models, from LLMs and VLMs such as GPT-4o, Llama 3.2, and Aya 23 to task-specific systems such as PP-OCR and LangID, and show that most NLP technologies cannot handle Indonesia's local scripts, with many achieving near-zero performance.
SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages
Lovenia, Holy, Mahendra, Rahmad, Akbar, Salsabil Maulana, Miranda, Lester James V., Santoso, Jennifer, Aco, Elyanah, Fadhilah, Akhdan, Mansurov, Jonibek, Imperial, Joseph Marvin, Kampman, Onno P., Moniz, Joel Ruben Antony, Habibi, Muhammad Ravi Shulthan, Hudi, Frederikus, Montalan, Railey, Ignatius, Ryan, Lopo, Joanito Agili, Nixon, William, Karlsson, Börje F., Jaya, James, Diandaru, Ryandito, Gao, Yuze, Amadeus, Patrick, Wang, Bin, Cruz, Jan Christian Blaise, Whitehouse, Chenxi, Parmonangan, Ivan Halim, Khelli, Maria, Zhang, Wenyu, Susanto, Lucky, Ryanda, Reynard Adha, Hermawan, Sonny Lazuardi, Velasco, Dan John, Kautsar, Muhammad Dehan Al, Hendria, Willy Fitra, Moslem, Yasmin, Flynn, Noah, Adilazuarda, Muhammad Farid, Li, Haochen, Lee, Johanes, Damanhuri, R., Sun, Shuo, Qorib, Muhammad Reza, Djanibekov, Amirbek, Leong, Wei Qi, Do, Quyet V., Muennighoff, Niklas, Pansuwan, Tanrada, Putra, Ilham Firdausi, Xu, Yan, Tai, Ngee Chia, Purwarianti, Ayu, Ruder, Sebastian, Tjhi, William, Limkonchotiwat, Peerat, Aji, Alham Fikri, Keh, Sedrick, Winata, Genta Indra, Zhang, Ruochen, Koto, Fajri, Yong, Zheng-Xin, Cahyawijaya, Samuel
Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts, images, and audio datasets from SEA, compromising the quality of AI models for SEA languages. Evaluating models for SEA languages is challenging due to the scarcity of high-quality datasets, compounded by the dominance of English training data, raising concerns about potential cultural misrepresentation. To address these challenges, we introduce SEACrowd, a collaborative initiative that consolidates a comprehensive resource hub that fills the resource gap by providing standardized corpora in nearly 1,000 SEA languages across three modalities. Through our SEACrowd benchmarks, we assess the quality of AI models on 36 indigenous languages across 13 tasks, offering valuable insights into the current AI landscape in SEA. Furthermore, we propose strategies to facilitate greater AI advancements, maximizing potential utility and resource equity for the future of AI in SEA.
Leveraging tropical reef, bird and unrelated sounds for superior transfer learning in marine bioacoustics
Williams, Ben, van Merriënboer, Bart, Dumoulin, Vincent, Hamer, Jenny, Triantafillou, Eleni, Fleishman, Abram B., McKown, Matthew, Munger, Jill E., Rice, Aaron N., Lillis, Ashlee, White, Clemency E., Hobbs, Catherine A. D., Razak, Tries B., Jones, Kate E., Denton, Tom
Machine learning has the potential to revolutionize passive acoustic monitoring (PAM) for ecological assessments. However, high annotation and compute costs limit the field's efficacy. Generalizable pretrained networks can overcome these costs, but high-quality pretraining requires vast annotated libraries, limiting its current applicability primarily to bird taxa. Here, we identify the optimum pretraining strategy for a data-deficient domain using coral reef bioacoustics. We assemble ReefSet, a large annotated library of reef sounds, though modest compared to bird libraries at 2% of the sample count. Through testing few-shot transfer learning performance, we observe that pretraining on bird audio provides notably superior generalizability compared to pretraining on ReefSet or unrelated audio alone. However, our key findings show that cross-domain mixing which leverages bird, reef and unrelated audio during pretraining maximizes reef generalizability. SurfPerch, our pretrained network, provides a strong foundation for automated analysis of marine PAM data with minimal annotation and compute costs.
Constructing and Expanding Low-Resource and Underrepresented Parallel Datasets for Indonesian Local Languages
Lopo, Joanito Agili, Tanone, Radius
In Indonesia, local languages play an integral role in the culture. However, the available Indonesian language resources still fall into the category of limited data in the Natural Language Processing (NLP) field. This is become problematic when build NLP model for these languages. To address this gap, we introduce Bhinneka Korpus, a multilingual parallel corpus featuring five Indonesian local languages. Our goal is to enhance access and utilization of these resources, extending their reach within the country. We explained in a detail the dataset collection process and associated challenges. Additionally, we experimented with translation task using the IBM Model 1 due to data constraints. The result showed that the performance of each language already shows good indications for further development. Challenges such as lexical variation, smoothing effects, and cross-linguistic variability are discussed. We intend to evaluate the corpus using advanced NLP techniques for low-resource languages, paving the way for multilingual translation models.
Adaptive Hierarchical Origami Metastructures
Li, Yanbin, Di Lallo, Antonio, Zhu, Junxi, Chi, Yinding, Su, Hao, Yin, Jie
Shape-morphing capabilities are crucial for enabling multifunctionality in both biological and artificial systems. Various strategies for shape morphing have been proposed for applications in metamaterials and robotics. However, few of these approaches have achieved the ability to seamlessly transform into a multitude of volumetric shapes post-fabrication using a relatively simple actuation and control mechanism. Taking inspiration from thick origami and hierarchies in nature, we present a new hierarchical construction method based on polyhedrons to create an extensive library of compact origami metastructures. We show that a single hierarchical origami structure can autonomously adapt to over 103 versatile architectural configurations, achieved with the utilization of fewer than 3 actuation degrees of freedom and employing simple transition kinematics. We uncover the fundamental principles governing theses shape transformation through theoretical models. Furthermore, we also demonstrate the wide-ranging potential applications of these transformable hierarchical structures. These include their uses as untethered and autonomous robotic transformers capable of various gait-shifting and multidirectional locomotion, as well as rapidly self-deployable and self-reconfigurable architecture, exemplifying its scalability up to the meter scale. Lastly, we introduce the concept of multitask reconfigurable and deployable space robots and habitats, showcasing the adaptability and versatility of these metastructures.
The Trickle-down Impact of Reward (In-)consistency on RLHF
Shen, Lingfeng, Chen, Sihao, Song, Linfeng, Jin, Lifeng, Peng, Baolin, Mi, Haitao, Khashabi, Daniel, Yu, Dong
Standard practice within Reinforcement Learning from Human Feedback (RLHF) involves optimizing against a Reward Model (RM), which itself is trained to reflect human preferences for desirable generations. A notable subject that is understudied is the (in-)consistency of RMs -- whether they can recognize the semantic changes to different prompts and appropriately adapt their reward assignments -- and their impact on the downstream RLHF model. In this paper, we visit a series of research questions relevant to RM inconsistency: (1) How can we measure the consistency of reward models? (2) How consistent are the existing RMs and how can we improve them? (3) In what ways does reward inconsistency influence the chatbots resulting from the RLHF model training? We propose Contrast Instructions -- a benchmarking strategy for the consistency of RM. Each example in Contrast Instructions features a pair of lexically similar instructions with different ground truth responses. A consistent RM is expected to rank the corresponding instruction and response higher than other combinations. We observe that current RMs trained with the standard ranking objective fail miserably on Contrast Instructions compared to average humans. To show that RM consistency can be improved efficiently without using extra training budget, we propose two techniques ConvexDA and RewardFusion, which enhance reward consistency through extrapolation during the RM training and inference stage, respectively. We show that RLHF models trained with a more consistent RM yield more useful responses, suggesting that reward inconsistency exhibits a trickle-down effect on the downstream RLHF process.
MADLAD-400: A Multilingual And Document-Level Large Audited Dataset
Kudugunta, Sneha, Caswell, Isaac, Zhang, Biao, Garcia, Xavier, Choquette-Choo, Christopher A., Lee, Katherine, Xin, Derrick, Kusupati, Aditya, Stella, Romi, Bapna, Ankur, Firat, Orhan
We introduce MADLAD-400, a manually audited, general domain 3T token monolingual dataset based on CommonCrawl, spanning 419 languages. We discuss the limitations revealed by self-auditing MADLAD-400, and the role data auditing had in the dataset creation process. We then train and release a 10.7B-parameter multilingual machine translation model on 250 billion tokens covering over 450 languages using publicly available data, and find that it is competitive with models that are significantly larger, and report the results on different domains. In addition, we train a 8B-parameter language model, and assess the results on few-shot translation. We make the baseline models available to the research community.
Crackling or desolate?: AI trained to hear coral's sounds of life
June 6 (Reuters) - When a team of scientists listened to an audio clip recorded underwater off islands in central Indonesia, they heard what sounded like a campfire. Instead, it was a coral reef, teeming with life, according to a study scientists from British and Indonesian universities published last month, in which they used hundreds of such audio clips to train a computer programme to monitor the health of a coral reef by listening to it. A healthy reef has a complex "crackling, campfire-like" sound because of all the creatures living on and in it, while a degraded reef sounds more desolate, life sciences specialist and the team's lead researcher Ben Williams said. The artificial intelligence (AI) system parses data points such as the frequency and loudness of the sound from the audio clips, and can determine with at least 92% accuracy whether the reef is healthy or degraded, according to the team's study published in Ecological Indicators journal. The scientists hope this new AI system will help conservation groups around the world to track reef health more efficiently.