Not enough data to create a plot.
Try a different view from the menu above.
arXiv.org Machine Learning
Sparse Conformal Predictors
Conformal predictors, introduced by Vovk et al. (2005), serve to build prediction intervals by exploiting a notion of conformity of the new data point with previously observed data. In the present paper, we propose a novel method for constructing prediction intervals for the response variable in multivariate linear models. The main emphasis is on sparse linear models, where only few of the covariates have significant influence on the response variable even if their number is very large. Our approach is based on combining the principle of conformal prediction with the $\ell_1$ penalized least squares estimator (LASSO). The resulting confidence set depends on a parameter $\epsilon>0$ and has a coverage probability larger than or equal to $1-\epsilon$. The numerical experiments reported in the paper show that the length of the confidence set is small. Furthermore, as a by-product of the proposed approach, we provide a data-driven procedure for choosing the LASSO penalty. The selection power of the method is illustrated on simulated data.
Sparse partial least squares for on-line variable selection in multivariate data streams
McWilliams, Brian, Montana, Giovanni
In this paper we propose a computationally efficient algorithm for on-line variable selection in multivariate regression problems involving high dimensional data streams. The algorithm recursively extracts all the latent factors of a partial least squares solution and selects the most important variables for each factor. This is achieved by means of only one sparse singular value decomposition which can be efficiently updated on-line and in an adaptive fashion. Simulation results based on artificial data streams demonstrate that the algorithm is able to select important variables in dynamic settings where the correlation structure among the observed streams is governed by a few hidden components and the importance of each variable changes over time. We also report on an application of our algorithm to a multivariate version of the "enhanced index tracking" problem using financial data streams. The application consists of performing on-line asset allocation with the objective of overperforming two benchmark indices simultaneously.
Infinite Viterbi alignments in the two state hidden Markov models
Since the early days of digital communication, Hidden Markov Models (HMMs) have now been routinely used in speech recognition, processing of natural languages, images, and in bioinformatics. An HMM $(X_i,Y_i)_{i\ge 1}$ assumes observations $X_1,X_2,...$ to be conditionally independent given an "explanotary" Markov process $Y_1,Y_2,...$, which itself is not observed; moreover, the conditional distribution of $X_i$ depends solely on $Y_i$. Central to the theory and applications of HMM is the Viterbi algorithm to find {\em a maximum a posteriori} estimate $q_{1:n}=(q_1,q_2,...,q_n)$ of $Y_{1:n}$ given the observed data $x_{1:n}$. Maximum {\em a posteriori} paths are also called Viterbi paths or alignments. Recently, attempts have been made to study the behavior of Viterbi alignments of HMMs with two hidden states when $n$ tends to infinity. It has indeed been shown that in some special cases a well-defined limiting Viterbi alignment exists. While innovative, these attempts have relied on rather strong assumptions. This work proves the existence of infinite Viterbi alignments for virtually any HMM with two hidden states.
Separating populations with wide data: A spectral analysis
Blum, Avrim, Coja-Oghlan, Amin, Frieze, Alan, Zhou, Shuheng
In this paper, we consider the problem of partitioning a small data sample drawn from a mixture of $k$ product distributions. We are interested in the case that individual features are of low average quality $\gamma$, and we want to use as few of them as possible to correctly partition the sample. We analyze a spectral technique that is able to approximately optimize the total data size--the product of number of data points $n$ and the number of features $K$--needed to correctly perform this partitioning as a function of $1/\gamma$ for $K>n$. Our goal is motivated by an application in clustering individuals according to their population of origin using markers, when the divergence between any two of the populations is small.
Model-Consistent Sparse Estimation through the Bootstrap
We consider the least-square linear regression problem with regularization by the $\ell^1$-norm, a problem usually referred to as the Lasso. In this paper, we first present a detailed asymptotic analysis of model consistency of the Lasso in low-dimensional settings. For various decays of the regularization parameter, we compute asymptotic equivalents of the probability of correct model selection. For a specific rate decay, we show that the Lasso selects all the variables that should enter the model with probability tending to one exponentially fast, while it selects all other variables with strictly positive probability. We show that this property implies that if we run the Lasso for several bootstrapped replications of a given sample, then intersecting the supports of the Lasso bootstrap estimates leads to consistent model selection. This novel variable selection procedure, referred to as the Bolasso, is extended to high-dimensional settings by a provably consistent two-step procedure.
Sparse Causal Discovery in Multivariate Time Series
Haufe, Stefan, Nolte, Guido, Mueller, Klaus-Robert, Kraemer, Nicole
Our goal is to estimate causal interactions in multivariate time series. Using vector autoregressive (VAR) models, these can be defined based on non-vanishing coefficients belonging to respective time-lagged instances. As in most cases a parsimonious causality structure is assumed, a promising approach to causal discovery consists in fitting VAR models with an additional sparsity-promoting regularization. Along this line we here propose that sparsity should be enforced for the subgroups of coefficients that belong to each pair of time series, as the absence of a causal relation requires the coefficients for all time-lags to become jointly zero. Such behavior can be achieved by means of l1-l2-norm regularized regression, for which an efficient active set solver has been proposed recently. Our method is shown to outperform standard methods in recovering simulated causality graphs. The results are on par with a second novel approach which uses multiple statistical testing.
Foundations of a Multi-way Spectral Clustering Framework for Hybrid Linear Modeling
Chen, Guangliang, Lerman, Gilad
The problem of Hybrid Linear Modeling (HLM) is to model and segment data using a mixture of affine subspaces. Different strategies have been proposed to solve this problem, however, rigorous analysis justifying their performance is missing. This paper suggests the Theoretical Spectral Curvature Clustering (TSCC) algorithm for solving the HLM problem, and provides careful analysis to justify it. The TSCC algorithm is practically a combination of Govindu's multi-way spectral clustering framework (CVPR 2005) and Ng et al.'s spectral clustering algorithm (NIPS 2001). The main result of this paper states that if the given data is sampled from a mixture of distributions concentrated around affine subspaces, then with high sampling probability the TSCC algorithm segments well the different underlying clusters. The goodness of clustering depends on the within-cluster errors, the between-clusters interaction, and a tuning parameter applied by TSCC. The proof also provides new insights for the analysis of Ng et al. (NIPS 2001).
Differential Privacy with Compression
Zhou, Shuheng, Ligett, Katrina, Wasserman, Larry
This work studies formal utility and privacy guarantees for a simple multiplicative database transformation, where the data are compressed by a random linear or affine transformation, reducing the number of data records substantially, while preserving the number of original input variables. We provide an analysis framework inspired by a recent concept known as differential privacy (Dwork 06). Our goal is to show that, despite the general difficulty of achieving the differential privacy guarantee, it is possible to publish synthetic data that are useful for a number of common statistical learning applications. This includes high dimensional sparse regression (Zhou et al. 07), principal component analysis (PCA), and other statistical measures (Liu et al. 06) based on the covariance of the initial data.
PAC-Bayesian Bounds for Randomized Empirical Risk Minimizers
The aim of this paper is to generalize the PAC-Bayesian theorems proved by Catoni in the classification setting to more general problems of statistical inference. We show how to control the deviations of the risk of randomized estimators. A particular attention is paid to randomized estimators drawn in a small neighborhood of classical estimators, whose study leads to control the risk of the latter. These results allow to bound the risk of very general estimation procedures, as well as to perform model selection.