Plotting

 arXiv.org Machine Learning


Generative adversarial framework to calibrate excursion set models for the 3D morphology of all-solid-state battery cathodes

arXiv.org Machine Learning

This paper presents a computational method for generating virtual 3D morphologies of functional materials using low-parametric stochastic geometry models, i.e., digital twins, calibrated with 2D microscopy images. These digital twins allow systematic parameter variations to simulate various morphologies, that can be deployed for virtual materials testing by means of spatially resolved numerical simulations of macroscopic properties. Generative adversarial networks (GANs) have gained popularity for calibrating models to generate realistic 3D morphologies. However, GANs often comprise of numerous uninterpretable parameters make systematic variation of morphologies for virtual materials testing challenging. In contrast, low-parametric stochastic geometry models (e.g., based on Gaussian random fields) enable targeted variation but may struggle to mimic complex morphologies. Combining GANs with advanced stochastic geometry models (e.g., excursion sets of more general random fields) addresses these limitations, allowing model calibration solely from 2D image data. This approach is demonstrated by generating a digital twin of all-solid-state battery (ASSB) cathodes. Since the digital twins are parametric, they support systematic exploration of structural scenarios and their macroscopic properties. The proposed method facilitates simulation studies for optimizing 3D morphologies, benefiting not only ASSB cathodes but also other materials with similar structures.


Towards Understanding the Benefits of Neural Network Parameterizations in Geophysical Inversions: A Study With Neural Fields

arXiv.org Machine Learning

In this work, we employ neural fields, which use neural networks to map a coordinate to the corresponding physical property value at that coordinate, in a test-time learning manner. For a test-time learning method, the weights are learned during the inversion, as compared to traditional approaches which require a network to be trained using a training data set. Results for synthetic examples in seismic tomography and direct current resistivity inversions are shown first. We then perform a singular value decomposition analysis on the Jacobian of the weights of the neural network (SVD analysis) for both cases to explore the effects of neural networks on the recovered model. The results show that the test-time learning approach can eliminate unwanted artifacts in the recovered subsurface physical property model caused by the sensitivity of the survey and physics. Therefore, NFs-Inv improves the inversion results compared to the conventional inversion in some cases such as the recovery of the dip angle or the prediction of the boundaries of the main target. In the SVD analysis, we observe similar patterns in the left-singular vectors as were observed in some diffusion models, trained in a supervised manner, for generative tasks in computer vision. This observation provides evidence that there is an implicit bias, which is inherent in neural network structures, that is useful in supervised learning and test-time learning models. This implicit bias has the potential to be useful for recovering models in geophysical inversions.


CausalRivers -- Scaling up benchmarking of causal discovery for real-world time-series

arXiv.org Machine Learning

Causal discovery, or identifying causal relationships from observational data, is a notoriously challenging task, with numerous methods proposed to tackle it. Despite this, in-the-wild evaluation of these methods is still lacking, as works frequently rely on synthetic data evaluation and sparse real-world examples under critical theoretical assumptions. Real-world causal structures, however, are often complex, making it hard to decide on a proper causal discovery strategy. To bridge this gap, we introduce CausalRivers, the largest in-the-wild causal discovery benchmarking kit for time-series data to date. CausalRivers features an extensive dataset on river discharge that covers the eastern German territory (666 measurement stations) and the state of Bavaria (494 measurement stations). It spans the years 2019 to 2023 with a 15-minute temporal resolution. Further, we provide additional data from a flood around the Elbe River, as an event with a pronounced distributional shift. Leveraging multiple sources of information and time-series meta-data, we constructed two distinct causal ground truth graphs (Bavaria and eastern Germany). These graphs can be sampled to generate thousands of subgraphs to benchmark causal discovery across diverse and challenging settings. To demonstrate the utility of CausalRivers, we evaluate several causal discovery approaches through a set of experiments to identify areas for improvement. CausalRivers has the potential to facilitate robust evaluations and comparisons of causal discovery methods. Besides this primary purpose, we also expect that this dataset will be relevant for connected areas of research, such as time-series forecasting and anomaly detection. Based on this, we hope to push benchmark-driven method development that fosters advanced techniques for causal discovery, as is the case for many other areas of machine learning.


Principal Component Analysis When n < p: Challenges and Solutions

arXiv.org Machine Learning

Principal Component Analysis is a key technique for reducing the complexity of high-dimensional data while preserving its fundamental data structure, ensuring models remain stable and interpretable. This is achieved by transforming the original variables into a new set of uncorrelated variables (principal components) based on the covariance structure of the original variables. However, since the traditional maximum likelihood covariance estimator does not accurately converge to the true covariance matrix, the standard principal component analysis performs poorly as a dimensionality reduction technique in high-dimensional scenarios $n


Do regularization methods for shortcut mitigation work as intended?

arXiv.org Machine Learning

Mitigating shortcuts, where models exploit spurious correlations in training data, remains a significant challenge for improving generalization. Regularization methods have been proposed to address this issue by enhancing model generalizability. However, we demonstrate that these methods can sometimes overregularize, inadvertently suppressing causal features along with spurious ones. In this work, we analyze the theoretical mechanisms by which regularization mitigates shortcuts and explore the limits of its effectiveness. Additionally, we identify the conditions under which regularization can successfully eliminate shortcuts without compromising causal features. Through experiments on synthetic and real-world datasets, our comprehensive analysis provides valuable insights into the strengths and limitations of regularization techniques for addressing shortcuts, offering guidance for developing more robust models.


Interpretable Neural Causal Models with TRAM-DAGs

arXiv.org Machine Learning

The ultimate goal of most scientific studies is to understand the underlying causal mechanism between the involved variables. Structural causal models (SCMs) are widely used to represent such causal mechanisms. Given an SCM, causal queries on all three levels of Pearl's causal hierarchy can be answered: $L_1$ observational, $L_2$ interventional, and $L_3$ counterfactual. An essential aspect of modeling the SCM is to model the dependency of each variable on its causal parents. Traditionally this is done by parametric statistical models, such as linear or logistic regression models. This allows to handle all kinds of data types and fit interpretable models but bears the risk of introducing a bias. More recently neural causal models came up using neural networks (NNs) to model the causal relationships, allowing the estimation of nearly any underlying functional form without bias. However, current neural causal models are generally restricted to continuous variables and do not yield an interpretable form of the causal relationships. Transformation models range from simple statistical regressions to complex networks and can handle continuous, ordinal, and binary data. Here, we propose to use TRAMs to model the functional relationships in SCMs allowing us to bridge the gap between interpretability and flexibility in causal modeling. We call this method TRAM-DAG and assume currently that the underlying directed acyclic graph is known. For the fully observed case, we benchmark TRAM-DAGs against state-of-the-art statistical and NN-based causal models. We show that TRAM-DAGs are interpretable but also achieve equal or superior performance in queries ranging from $L_1$ to $L_3$ in the causal hierarchy. For the continuous case, TRAM-DAGs allow for counterfactual queries for three common causal structures, including unobserved confounding.


Enhancing variational quantum algorithms by balancing training on classical and quantum hardware

arXiv.org Machine Learning

Quantum computers offer a promising route to tackling problems that are classically intractable such as in prime-factorization, solving large-scale linear algebra and simulating complex quantum systems, but require fault-tolerant quantum hardware. On the other hand, variational quantum algorithms (VQAs) have the potential to provide a near-term route to quantum utility or advantage, and is usually constructed by using parametrized quantum circuits (PQCs) in combination with a classical optimizer for training. Although VQAs have been proposed for a multitude of tasks such as ground-state estimation, combinatorial optimization and unitary compilation, there remain major challenges in its trainability and resource costs on quantum hardware. Here we address these challenges by adopting Hardware Efficient and dynamical LIe algebra Supported Ansatz (HELIA), and propose two training schemes that combine an existing g-sim method (that uses the underlying group structure of the operators) and the Parameter-Shift Rule (PSR). Our improvement comes from distributing the resources required for gradient estimation and training to both classical and quantum hardware. We numerically test our proposal for ground-state estimation using Variational Quantum Eigensolver (VQE) and classification of quantum phases using quantum neural networks. Our methods show better accuracy and success of trials, and also need fewer calls to the quantum hardware on an average than using only PSR (upto 60% reduction), that runs exclusively on quantum hardware. We also numerically demonstrate the capability of HELIA in mitigating barren plateaus, paving the way for training large-scale quantum models.


Information maximization for a broad variety of multi-armed bandit games

arXiv.org Machine Learning

Information and free-energy maximization are physics principles that provide general rules for an agent to optimize actions in line with specific goals and policies. These principles are the building blocks for designing decision-making policies capable of efficient performance with only partial information. Notably, the information maximization principle has shown remarkable success in the classical bandit problem and has recently been shown to yield optimal algorithms for Gaussian and sub-Gaussian reward distributions. This article explores a broad extension of physics-based approaches to more complex and structured bandit problems. To this end, we cover three distinct types of bandit problems, where information maximization is adapted and leads to strong performance. Since the main challenge of information maximization lies in avoiding over-exploration, we highlight how information is tailored at various levels to mitigate this issue, paving the way for more efficient and robust decision-making strategies.


Manifold learning in metric spaces

arXiv.org Machine Learning

Laplacian-based methods are popular for dimensionality reduction of data lying in $\mathbb{R}^N$. Several theoretical results for these algorithms depend on the fact that the Euclidean distance approximates the geodesic distance on the underlying submanifold which the data are assumed to lie on. However, for some applications, other metrics, such as the Wasserstein distance, may provide a more appropriate notion of distance than the Euclidean distance. We provide a framework that generalizes the problem of manifold learning to metric spaces and study when a metric satisfies sufficient conditions for the pointwise convergence of the graph Laplacian.


Universal approximation property of neural stochastic differential equations

arXiv.org Machine Learning

We identify various classes of neural networks that are able to approximate continuous functions locally uniformly subject to fixed global linear growth constraints. For such neural networks the associated neural stochastic differential equations can approximate general stochastic differential equations, both of It\^o diffusion type, arbitrarily well. Moreover, quantitative error estimates are derived for stochastic differential equations with sufficiently regular coefficients.