Plotting

 arXiv.org Artificial Intelligence


Arabic Speech Recognition System using CMU-Sphinx4

arXiv.org Artificial Intelligence

In this paper we present the creation of an Arabic version of Automated Speech Recognition System (ASR). This system is based on the open source Sphinx-4, from the Carnegie Mellon University. Which is a speech recognition system based on discrete hidden Markov models (HMMs). We investigate the changes that must be made to the model to adapt Arabic voice recognition. Keywords: Speech recognition, Acoustic model, Arabic language, HMMs, CMUSphinx-4, Artificial intelligence.


Introduction to Arabic Speech Recognition Using CMUSphinx System

arXiv.org Artificial Intelligence

In this paper Arabic was investigated from the speech recognition problem point of view. We propose a novel approach to build an Arabic Automated Speech Recognition System (ASR). This system is based on the open source CMU Sphinx-4, from the Carnegie Mellon University. CMU Sphinx is a large-vocabulary; speaker-independent, continuous speech recognition system based on discrete Hidden Markov Models (HMMs). We build a model using utilities from the OpenSource CMU Sphinx. We will demonstrate the possible adaptability of this system to Arabic voice recognition.


Personalizing Image Search Results on Flickr

arXiv.org Artificial Intelligence

The social media site Flickr allows users to upload their photos, annotate them with tags, submit them to groups, and also to form social networks by adding other users as contacts. Flickr offers multiple ways of browsing or searching it. One option is tag search, which returns all images tagged with a specific keyword. If the keyword is ambiguous, e.g., ``beetle'' could mean an insect or a car, tag search results will include many images that are not relevant to the sense the user had in mind when executing the query. We claim that users express their photography interests through the metadata they add in the form of contacts and image annotations. We show how to exploit this metadata to personalize search results for the user, thereby improving search performance. First, we show that we can significantly improve search precision by filtering tag search results by user's contacts or a larger social network that includes those contact's contacts. Secondly, we describe a probabilistic model that takes advantage of tag information to discover latent topics contained in the search results. The users' interests can similarly be described by the tags they used for annotating their images. The latent topics found by the model are then used to personalize search results by finding images on topics that are of interest to the user.


Exploiting Social Annotation for Automatic Resource Discovery

arXiv.org Artificial Intelligence

Information integration applications, such as mediators or mashups, that require access to information resources currently rely on users manually discovering and integrating them in the application. Manual resource discovery is a slow process, requiring the user to sift through results obtained via keyword-based search. Although search methods have advanced to include evidence from document contents, its metadata and the contents and link structure of the referring pages, they still do not adequately cover information sources -- often called ``the hidden Web''-- that dynamically generate documents in response to a query. The recently popular social bookmarking sites, which allow users to annotate and share metadata about various information sources, provide rich evidence for resource discovery. In this paper, we describe a probabilistic model of the user annotation process in a social bookmarking system del.icio.us. We then use the model to automatically find resources relevant to a particular information domain. Our experimental results on data obtained from \emph{del.icio.us} show this approach as a promising method for helping automate the resource discovery task.


Calculating Valid Domains for BDD-Based Interactive Configuration

arXiv.org Artificial Intelligence

In these notes we formally describe the functionality of Calculating Valid Domains from the BDD representing the solution space of valid configurations. The formalization is largely based on the CLab configuration framework.


A neural network approach to ordinal regression

arXiv.org Artificial Intelligence

Ordinal regression is an important type of learning, which has properties of both classification and regression. Here we describe a simple and effective approach to adapt a traditional neural network to learn ordinal categories. Our approach is a generalization of the perceptron method for ordinal regression. On several benchmark datasets, our method (NNRank) outperforms a neural network classification method. Compared with the ordinal regression methods using Gaussian processes and support vector machines, NNRank achieves comparable performance. Moreover, NNRank has the advantages of traditional neural networks: learning in both online and batch modes, handling very large training datasets, and making rapid predictions. These features make NNRank a useful and complementary tool for large-scale data processing tasks such as information retrieval, web page ranking, collaborative filtering, and protein ranking in Bioinformatics.


Architecture for Pseudo Acausal Evolvable Embedded Systems

arXiv.org Artificial Intelligence

Advances in semiconductor technology are contributing to the increasing complexity in the design of embedded systems. Architectures with novel techniques such as evolvable nature and autonomous behavior have engrossed lot of attention. This paper demonstrates conceptually evolvable embedded systems can be characterized basing on acausal nature. It is noted that in acausal systems, future input needs to be known, here we make a mechanism such that the system predicts the future inputs and exhibits pseudo acausal nature. An embedded system that uses theoretical framework of acausality is proposed. Our method aims at a novel architecture that features the hardware evolability and autonomous behavior alongside pseudo acausality. Various aspects of this architecture are discussed in detail along with the limitations.


Intelligent location of simultaneously active acoustic emission sources: Part I

arXiv.org Artificial Intelligence

The intelligent acoustic emission locator is described in Part I, while Part II discusses blind source separation, time delay estimation and location of two simultaneously active continuous acoustic emission sources. The location of acoustic emission on complicated aircraft frame structures is a difficult problem of non-destructive testing. This article describes an intelligent acoustic emission source locator. The intelligent locator comprises a sensor antenna and a general regression neural network, which solves the location problem based on learning from examples. Locator performance was tested on different test specimens. Tests have shown that the accuracy of location depends on sound velocity and attenuation in the specimen, the dimensions of the tested area, and the properties of stored data. The location accuracy achieved by the intelligent locator is comparable to that obtained by the conventional triangulation method, while the applicability of the intelligent locator is more general since analysis of sonic ray paths is avoided. This is a promising method for non-destructive testing of aircraft frame structures by the acoustic emission method.


Intelligent location of simultaneously active acoustic emission sources: Part II

arXiv.org Artificial Intelligence

Part I describes an intelligent acoustic emission locator, while Part II discusses blind source separation, time delay estimation and location of two continuous acoustic emission sources. Acoustic emission (AE) analysis is used for characterization and location of developing defects in materials. AE sources often generate a mixture of various statistically independent signals. A difficult problem of AE analysis is separation and characterization of signal components when the signals from various sources and the mode of mixing are unknown. Recently, blind source separation (BSS) by independent component analysis (ICA) has been used to solve these problems. The purpose of this paper is to demonstrate the applicability of ICA to locate two independent simultaneously active acoustic emission sources on an aluminum band specimen. The method is promising for non-destructive testing of aircraft frame structures by acoustic emission analysis.


Modelling Complexity in Musical Rhythm

arXiv.org Artificial Intelligence

This paper constructs a tree structure for the music rhythm using the L-system. It models the structure as an automata and derives its complexity. It also solves the complexity for the L-system. This complexity can resolve the similarity between trees. This complexity serves as a measure of psychological complexity for rhythms. It resolves the music complexity of various compositions including the Mozart effect K488. Keyword: music perception, psychological complexity, rhythm, L-system, automata, temporal associative memory, inverse problem, rewriting rule, bracketed string, tree similarity