Not enough data to create a plot.
Try a different view from the menu above.
arXiv.org Artificial Intelligence
Stationary probability density of stochastic search processes in global optimization
A method for the construction of approximate analytical expressions for the stationary marginal densities of general stochastic search processes is proposed. By the marginal densities, regions of the search space that with high probability contain the global optima can be readily defined. The density estimation procedure involves a controlled number of linear operations, with a computational cost per iteration that grows linearly with problem size.
Effective linkage learning using low-order statistics and clustering
Emmendorfer, Leonardo, Pozo, Aurora
The adoption of probabilistic models for the best individuals found so far is a powerful approach for evolutionary computation. Increasingly more complex models have been used by estimation of distribution algorithms (EDAs), which often result better effectiveness on finding the global optima for hard optimization problems. Supervised and unsupervised learning of Bayesian networks are very effective options, since those models are able to capture interactions of high order among the variables of a problem. Diversity preservation, through niching techniques, has also shown to be very important to allow the identification of the problem structure as much as for keeping several global optima. Recently, clustering was evaluated as an effective niching technique for EDAs, but the performance of simpler low-order EDAs was not shown to be much improved by clustering, except for some simple multimodal problems. This work proposes and evaluates a combination operator guided by a measure from information theory which allows a clustered low-order EDA to effectively solve a comprehensive range of benchmark optimization problems.
Fuzzy Modeling of Electrical Impedance Tomography Image of the Lungs
Tanaka, Harki, Ortega, Neli Regina Siqueira, Galizia, Mauricio Stanzione, Sobrinho, Joao Batista Borges, Amato, Marcelo Britto Passos
Electrical Impedance Tomography (EIT) is a functional imaging method that is being developed for bedside use in critical care medicine. Aiming at improving the chest anatomical resolution of EIT images we developed a fuzzy model based on EIT high temporal resolution and the functional information contained in the pulmonary perfusion and ventilation signals. EIT data from an experimental animal model were collected during normal ventilation and apnea while an injection of hypertonic saline was used as a reference . The fuzzy model was elaborated in three parts: a modeling of the heart, a pulmonary map from ventilation images and, a pulmonary map from perfusion images. Image segmentation was performed using a threshold method and a ventilation/perfusion map was generated. EIT images treated by the fuzzy model were compared with the hypertonic saline injection method and CT-scan images, presenting good results in both qualitative (the image obtained by the model was very similar to that of the CT-scan) and quantitative (the ROC curve provided an area equal to 0.93) point of view. Undoubtedly, these results represent an important step in the EIT images area, since they open the possibility of developing EIT-based bedside clinical methods, which are not available nowadays. These achievements could serve as the base to develop EIT diagnosis system for some life-threatening diseases commonly found in critical care medicine.
Using RDF to Model the Structure and Process of Systems
Rodriguez, Marko A., Watkins, Jennifer H., Bollen, Johan, Gershenson, Carlos
Many systems can be described in terms of networks of discrete elements and their various relationships to one another. A semantic network, or multi-relational network, is a directed labeled graph consisting of a heterogeneous set of entities connected by a heterogeneous set of relationships. Semantic networks serve as a promising general-purpose modeling substrate for complex systems. Various standardized formats and tools are now available to support practical, large-scale semantic network models. First, the Resource Description Framework (RDF) offers a standardized semantic network data model that can be further formalized by ontology modeling languages such as RDF Schema (RDFS) and the Web Ontology Language (OWL). Second, the recent introduction of highly performant triple-stores (i.e. semantic network databases) allows semantic network models on the order of $10^9$ edges to be efficiently stored and manipulated. RDF and its related technologies are currently used extensively in the domains of computer science, digital library science, and the biological sciences. This article will provide an introduction to RDF/RDFS/OWL and an examination of its suitability to model discrete element complex systems.
The structure of verbal sequences analyzed with unsupervised learning techniques
Recanati, Catherine, Rogovschi, Nicoleta, Bennani, Younรจs
Data mining allows the exploration of sequences of phenomena, whereas one usually tends to focus on isolated phenomena or on the relation between two phenomena. It offers invaluable tools for theoretical analyses and exploration of the structure of sentences, texts, dialogues, and speech. We report here the results of an attempt at using it for inspecting sequences of verbs from French accounts of road accidents. This analysis comes from an original approach of unsupervised training allowing the discovery of the structure of sequential data. The entries of the analyzer were only made of the verbs appearing in the sentences. It provided a classification of the links between two successive verbs into four distinct clusters, allowing thus text segmentation. We give here an interpretation of these clusters by applying a statistical analysis to independent semantic annotations.
A System for Predicting Subcellular Localization of Yeast Genome Using Neural Network
Thampi, Sabu M., Sekaran, K. Chandra
The subcellular location of a protein can provide valuable information about its function. With the rapid increase of sequenced genomic data, the need for an automated and accurate tool to predict subcellular localization becomes increasingly important. Many efforts have been made to predict protein subcellular localization. This paper aims to merge the artificial neural networks and bioinformatics to predict the location of protein in yeast genome. We introduce a new subcellular prediction method based on a backpropagation neural network. The results show that the prediction within an error limit of 5 to 10 percentage can be achieved with the system.
A Heuristic Routing Mechanism Using a New Addressing Scheme
Ravanbakhsh, Mohsen, Abbasi-Yadkori, Yasin, Abbaspour, Maghsoud, Sarbazi-Azad, Hamid
Current methods of routing are based on network information in the form of routing tables, in which routing protocols determine how to update the tables according to the network changes. Despite the variability of data in routing tables, node addresses are constant. In this paper, we first introduce the new concept of variable addresses, which results in a novel framework to cope with routing problems using heuristic solutions. Then we propose a heuristic routing mechanism based on the application of genes for determination of network addresses in a variable address network and describe how this method flexibly solves different problems and induces new ideas in providing integral solutions for variety of problems. The case of ad-hoc networks is where simulation results are more supportive and original solutions have been proposed for issues like mobility.
What's in a Name?
This paper describes experiments on identifying the language of a single name in isolation or in a document written in a different language. A new corpus has been compiled and made available, matching names against languages. This corpus is used in a series of experiments measuring the performance of general language models and names-only language models on the language identification task. Conclusions are drawn from the comparison between using general language models and names-only language models and between identifying the language of isolated names and the language of very short document fragments. Future research directions are outlined.
Local approximate inference algorithms
We present a new local approximation algorithm for computing Maximum a Posteriori (MAP) and log-partition function for arbitrary exponential family distribution represented by a finite-valued pair-wise Markov random field (MRF), say $G$. Our algorithm is based on decomposition of $G$ into {\em appropriately} chosen small components; then computing estimates locally in each of these components and then producing a {\em good} global solution. We show that if the underlying graph $G$ either excludes some finite-sized graph as its minor (e.g. Planar graph) or has low doubling dimension (e.g. any graph with {\em geometry}), then our algorithm will produce solution for both questions within {\em arbitrary accuracy}. We present a message-passing implementation of our algorithm for MAP computation using self-avoiding walk of graph. In order to evaluate the computational cost of this implementation, we derive novel tight bounds on the size of self-avoiding walk tree for arbitrary graph. As a consequence of our algorithmic result, we show that the normalized log-partition function (also known as free-energy) for a class of {\em regular} MRFs will converge to a limit, that is computable to an arbitrary accuracy.
Optimising the topology of complex neural networks
Jiang, Fei, Berry, Hugues, Schoenauer, Marc
In this paper, we study instances of complex neural networks, i.e. neural netwo rks with complex topologies. We use Self-Organizing Map neural networks whose n eighbourhood relationships are defined by a complex network, to classify handwr itten digits. We show that topology has a small impact on performance and robus tness to neuron failures, at least at long learning times. Performance may howe ver be increased (by almost 10%) by artificial evolution of the network topo logy. In our experimental conditions, the evolved networks are more random than their parents, but display a more heterogeneous degree distribution.