Goto

Collaborating Authors

 Washington University in St. Louis


Marginalized Denoising for Link Prediction and Multi-Label Learning

AAAI Conferences

Link prediction and multi-label learning on graphs are two important but challenging machine learning problems that have broad applications in diverse fields. Not only are the two problems inherently correlated and often appear concurrently, they are also exacerbated by incomplete data. We develop a novel algorithm to solve these two problems jointly under a unified framework, which helps reduce the impact of graph noise and benefits both tasks individually. We reduce multi-label learning problem into an additional link prediction task and solve both problems with marginalized denoising, which we co-regularize with Laplacian smoothing. This approach combines both learning tasks into a single convex objective function, which we optimize efficiently with iterative closed-form updates. The resulting approach performs significantly better than prior work on several important real-world applications with great consistency.


Modeling with Node Degree Preservation Can Accurately Find Communities

AAAI Conferences

An important problem in analyzing complex networks is discovery of modular or community structures embedded in the networks. Although being promising for identifying network communities, the popular stochastic models often do not preserve node degrees, thus reducing their representation power and applicability to real-world networks. Here we address this critical problem. Instead of using a blockmodel, we adopted a random-graph null model to faithfully capture community structures by preserving in the model the expected node degrees. The new model, learned using nonnegative matrix factorization, is more accurate and robust in representing community structures than the existing methods. Our results from extensive experiments on synthetic benchmarks and real-world networks show the superior performance of the new method over the existing methods in detecting both disjoint and overlapping communities.


Feature-Cost Sensitive Learning with Submodular Trees of Classifiers

AAAI Conferences

During the past decade, machine learning algorithms have become commonplace in large-scale real-world industrial applications. In these settings, the computation time to train and test machine learning algorithms is a key consideration. At training-time the algorithms must scale to very large data set sizes.At testing-time, the cost of feature extraction can dominate the CPU runtime. Recently, a promising method was proposed to account for the feature extraction cost at testing time, called Cost-sensitive Tree of Classifiers (CSTC). Although the CSTC problem is NP-hard, the authors suggest an approximation through a mixed-norm relaxation across many classifiers. This relaxation is slow to train and requires involved optimization hyperparameter tuning. We propose a different relaxation using approximate submodularity, called Approximately Submodular Tree of Classifiers (ASTC). ASTC is much simpler to implement, yields equivalent results but requires no optimization hyperparameter tuning and is up to two orders of magnitude faster to train.


Goal-Oriented Euclidean Heuristics with Manifold Learning

AAAI Conferences

Recently, a Euclidean heuristic (EH) has been proposed for A* search. EH exploits manifold learning methods to construct an embedding of the state space graph, and derives an admissible heuristic distance between two states from the Euclidean distance between their respective embedded points. EH has shown good performance and memory efficiency in comparison to other existing heuristics such as differential heuristics. However, its potential has not been fully explored. In this paper, we propose a number of techniques that can significantly improve the quality of EH. We propose a goal-oriented manifold learning scheme that optimizes the Euclidean distance to goals in the embedding while maintaining admissibility and consistency. We also propose a state heuristic enhancement technique to reduce the gap between heuristic and true distances. The enhanced heuristic is admissible but no longer consistent. We then employ a modified search algorithm, known as B' algorithm, that achieves optimality with inconsistent heuristics using consistency check and propagation. We demonstrate the effectiveness of the above techniques and report un-matched reduction in search costs across several non-trivial benchmark search problems.


Utilizing Landmarks in Euclidean Heuristics for Optimal Planning

AAAI Conferences

An important problem in AI is to construct high-quality heuristics for optimal search. Recently, the Euclidean heuristic (EH) has been proposed, which embeds a state space graph into a Euclidean space and uses Euclidean distances as approximations for the graph distances. The embedding process leverages recent research results from manifold learning, a subfield in machine learning, and guarantees that the heuristic is provably admissible and consistent. EH has shown good performance and memory efficiency in comparison to other existing heuristics. Our recent works have further improved the scalability and quality of EH. In this short paper, we present our latest progress on applying EH to problems in planning formalisms, which provide richer semantics than the simple state-space graph model. In particular, we improve EH by exploiting the landmark structure derived from the SAS+ planning formalism.


Towards Automated Choreographing of Web Services Using Planning

AAAI Conferences

For Web service composition, choreography has recently received great attention and demonstrated a few key advantages over orchestration such as distributed control, fairness, data efficiency, and scalability. Automated design of choreography plans, especially distributed plans for multiple roles, is more complex and has not been studied before. Existing work requires manual generation assisted by model checking. In this paper, we propose a novel planning-based approach that can automatically convert a given composition task to a distributed choreography specification. Although planning has been used for orchestration, it is difficult to use planning for choreography, as it involves decentralized control, concurrent workflows, and contingency. We propose a few novel techniques, including compilation of contingencies, dependency graph analysis, and communication control, to handle these characteristics using planning. We theoretically show the correctness of this approach and empirically evaluate its practicability.


A POMDP Model of Eye-Hand Coordination

AAAI Conferences

This paper presents a generative model of eye-hand coordination. We use numerical optimization to solve for the joint behavior of an eye and two hands, deriving a predicted motion pattern from first principles, without imposing heuristics. We model the planar scene as a POMDP with 17 continuous state dimensions. Belief-space optimization is facilitated by using a nominal-belief heuristic, whereby we assume (during planning) that the maximum likelihood observation is always obtained. Since a globally-optimal solution for such a high-dimensional domain is computationally intractable, we employ local optimization in the belief domain. By solving for a locally-optimal plan through belief space, we generate a motion pattern of mutual coordination between hands and eye: the eye's saccades disambiguate the scene in a task-relevant manner, and the hands' motions anticipate the eye's saccades. Finally, the model is validated through a behavioral experiment, in which human subjects perform the same eye-hand coordination task. We show how simulation is congruent with the experimental results.


A Novel Transition Based Encoding Scheme for Planning as Satisfiability

AAAI Conferences

Planning as satisfiability is a principal approach to planning with many eminent advantages. The existing planning as satisfiability techniques usually use encodings compiled from the STRIPS formalism. We introduce a novel SAT encoding scheme based on the SAS+ formalism. It exploits the structural information in the SAS+ formalism, resulting in more compact SAT instances and reducing the number of clauses by up to 50 fold. Our results show that this encoding scheme improves upon the STRIPS-based encoding, in terms of both time and memory efficiency.


What Can Actors Teach Robots About Interaction?

AAAI Conferences

In this paper, we describe our initial experiences using a mobile robot as a teaching aid in a stage movement class, taught in the Performing Arts Department of Washington University in St. Louis. The robot participated in a number of exercises, intended to teach the fundamentals of movement, and interacted closely with human acting students. We describe these exercises, what they are designed to teach the students, and discuss how using a robot as a teaching aid can enhance the students' experience. We describe two classes in which a robot participated, one under tele-operation and one fully autonomously, and discuss both the students' reaction to the robots, and our subjective evaluations of the systems success.