Goto

Collaborating Authors

 University of Technology Sydney


Coupled Collaborative Filtering for Context-aware Recommendation

AAAI Conferences

Context-aware features have been widely recognized as important factors in recommender systems. However, as a major technique in recommender systems, traditional Collaborative Filtering (CF) does not provide a straight-forward way of integrating the context-aware information into personal recommendation. We propose a Coupled Collaborative Filtering (CCF) model to measure the contextual information and use it to improve recommendations. In the proposed approach, coupled similarity computation is designed to be calculated by interitem, intra-context and inter-context interactions among item, user and context-ware factors. Experiments based on different types of CF models demonstrate the effectiveness of our design.


Multi-View Actionable Patterns for Managing Traffic Bottleneck

AAAI Conferences

Discovering congestion patterns from table-formed traffic reports is critical for traffic bottleneck analysis. However, patterns mined by existing algorithms often do not satisfy user requirements and are not actionable for traffic management. Traffic officers may not pursue the most frequent patterns but expect mining outcomes showing the dependence between congestion and various kinds of road properties for traffic planning. Such multi-view analysis requires to integrate user preferences of data attributes into pattern mining process. To tackle this problem, we propose a multi-view attributes reduction model for discovering the patterns of user interests, in which user views are interpreted as preferred attributes and formulated by attribute orders. Based on the pattern discovery model, a workflow is built for traffic bottleneck analysis, which consists of data preprocessing, preference representation and congestion pattern mining. Our approach is validated on the reports of road conditions from Shanghai, which shows that the resultant multi-view findings are effective for analyzing congestion causes and traffic management.


Towards Personalised Gaming via Facial Expression Recognition

AAAI Conferences

In this paper we propose an approach for personalising the space in which a game is played (i.e., levels) dependent on classifications of the user's facial expression ย โ€” to the end of tailoring the affective game experience to the individual user. Our approach is aimed at online game personalisation, i.e., the game experience is personalised during actual play of the game. A key insight of this paper is that game personalisation techniques can leverage novel computer vision-based techniques to unobtrusively infer player experiences automatically based on facial expression analysis. Specifically, to the end of tailoring the affective game experience to the individual user, in this paper we (1) leverage the proven InSight facial expression recognition SDK as a model of the user's affective state InSight, and (2) employ this model for guiding the online game personalisation process. User studies that validate the game personalisation approach in the actual video game Infinite Mario Bros. reveal that it provides an effective basis for converging to an appropriate affective state for the individual human player.


ReLISH: Reliable Label Inference via Smoothness Hypothesis

AAAI Conferences

The smoothness hypothesis is critical for graph-based semi-supervised learning. This paper defines local smoothness, based on which a new algorithm, Reliable Label Inference via Smoothness Hypothesis (ReLISH), is proposed. ReLISH has produced smoother labels than some existing methods for both labeled and unlabeled examples. Theoretical analyses demonstrate good stability and generalizability of ReLISH. Using real-world datasets, our empirical analyses reveal that ReLISH is promising for both transductive and inductive tasks, when compared with representative algorithms, including Harmonic Functions, Local and Global Consistency, Constraint Metric Learning, Linear Neighborhood Propagation, and Manifold Regularization.


Deep Modeling of Group Preferences for Group-Based Recommendation

AAAI Conferences

Nowadays, most recommender systems (RSs) mainly aim to suggest appropriate items for individuals. Due to the social nature of human beings, group activities have become an integral part of our daily life, thus motivating the study on group RS (GRS). However, most existing methods used by GRS make recommendations through aggregating individual ratings or individual predictive results rather than considering the collective features that govern user choices made within a group. As a result, such methods are heavily sensitive to data, hence they often fail to learn group preferences when the data are slightly inconsistent with predefined aggregation assumptions. To this end, we devise a novel GRS approach which accommodates both individual choices and group decisions in a joint model. More specifically, we propose a deep-architecture model built with collective deep belief networks and dual-wing restricted Boltzmann machines. With such a deep model, we can use high-level features, which are induced from lower-level features, to represent group preference so as to relieve the vulnerability of data. Finally, the experiments conducted on a real-world dataset prove the superiority of our deep model over other state-of-the-art methods.


Sample-adaptive Multiple Kernel Learning

AAAI Conferences

Existing multiple kernel learning (MKL) algorithms \textit{indiscriminately} apply a same set of kernel combination weights to all samples. However, the utility of base kernels could vary across samples and a base kernel useful for one sample could become noisy for another. In this case, rigidly applying a same set of kernel combination weights could adversely affect the learning performance. To improve this situation, we propose a sample-adaptive MKL algorithm, in which base kernels are allowed to be adaptively switched on/off with respect to each sample. We achieve this goal by assigning a latent binary variable to each base kernel when it is applied to a sample. The kernel combination weights and the latent variables are jointly optimized via margin maximization principle. As demonstrated on five benchmark data sets, the proposed algorithm consistently outperforms the comparable ones in the literature.


Signed Laplacian Embedding for Supervised Dimension Reduction

AAAI Conferences

Manifold learning is a powerful tool for solving nonlinear dimension reduction problems. By assuming that the high-dimensional data usually lie on a low-dimensional manifold, many algorithms have been proposed. However, most algorithms simply adopt the traditional graph Laplacian to encode the data locality, so the discriminative ability is limited and the embedding results are not always suitable for the subsequent classification. Instead, this paper deploys the signed graph Laplacian and proposes Signed Laplacian Embedding (SLE) for supervised dimension reduction. By exploring the label information, SLE comprehensively transfers the discrimination carried by the original data to the embedded low-dimensional space. Without perturbing the discrimination structure, SLE also retains the locality.Theoretically, we prove the immersion property by computing the rank of projection, and relate SLE to existing algorithms in the frame of patch alignment. Thorough empirical studies on synthetic and real datasets demonstrate the effectiveness of SLE.


Active Learning from Oracle with Knowledge Blind Spot

AAAI Conferences

Active learning traditionally assumes that an oracle is capable of providing labeling information for each query instance. This paper formulates a new research problem which allows an oracle admit that he/she is incapable of labeling some query instances or simply answer "I don't know the label." We define a unified objectivefunction to ensure that each query instance submitted to the oracleis the one mostly needed for labeling and the oracle should also hasthe knowledge to label. Experiments based on different types of knowledge blind spot (KBS) models demonstrate the effectiveness of theproposed design.