Plotting

 University of British Columbia


Reducing Friction for Knowledge Workers with Task Context

AI Magazine

Knowledge workers perform work on many tasks per day and often switch between tasks. When performing work on a task, a knowledge worker must typically search, navigate and dig through file systems, documents and emails, all of which introduce friction into the flow of work. This friction can be reduced, and productivity improved, by capturing and modeling the context of a knowledge workerโ€™s task based on how the knowledge worker interacts with an information space. Captured task contexts can be used to facilitate switching between tasks, to focus a user interface on just the information needed by a task and to recommend potentially other useful information. We report on the use of task contexts and the effect of context on productivity for a particular kind of knowledge worker, software developers. We also report on qualitative findings of the use of task contexts by a more general population of knowledge workers.


Reports of the AAAI 2014 Conference Workshops

AI Magazine

The AAAI-14 Workshop program was held Sunday and Monday, July 27โ€“28, 2012, at the Quรฉbec City Convention Centre in Quรฉbec, Canada. The AAAI-14 workshop program included fifteen workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Robotics; Artificial Intelligence Applied to Assistive Technologies and Smart Environments; Cognitive Computing for Augmented Human Intelligence; Computer Poker and Imperfect Information; Discovery Informatics; Incentives and Trust in Electronic Communities; Intelligent Cinematography and Editing; Machine Learning for Interactive Systems: Bridging the Gap between Perception, Action and Communication; Modern Artificial Intelligence for Health Analytics; Multiagent Interaction without Prior Coordination; Multidisciplinary Workshop on Advances in Preference Handling; Semantic Cities -- Beyond Open Data to Models, Standards and Reasoning; Sequential Decision Making with Big Data; Statistical Relational AI; and The World Wide Web and Public Health Intelligence. This article presents short summaries of those events.


Reports of the AAAI 2014 Conference Workshops

AI Magazine

The AAAI-14 Workshop program was held Sunday and Monday, July 27โ€“28, 2012, at the Quรฉbec City Convention Centre in Quรฉbec, Canada. Canada. The AAAI-14 workshop program included fifteen workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Robotics; Artificial Intelligence Applied to Assistive Technologies and Smart Environments; Cognitive Computing for Augmented Human Intelligence; Computer Poker and Imperfect Information; Discovery Informatics; Incentives and Trust in Electronic Communities; Intelligent Cinematography and Editing; Machine Learning for Interactive Systems: Bridging the Gap between Perception, Action and Communication; Modern Artificial Intelligence for Health Analytics; Multiagent Interaction without Prior Coordination; Multidisciplinary Workshop on Advances in Preference Handling; Semantic Cities โ€” Beyond Open Data to Models, Standards and Reasoning; Sequential Decision Making with Big Data; Statistical Relational AI; and The World Wide Web and Public Health Intelligence. This article presents short summaries of those events.


Representing Aggregators in Relational Probabilistic Models

AAAI Conferences

We consider the problem of, given a probabilistic model on a set of random variables, how to add a new variable that depends on the other variables, without changing the original distribution. In particular, we consider relational models (such as Markov logic networks (MLNs)), where we cannot directly define conditional probabilities. In relational models, there may be an unbounded number of parents in the grounding, and conditional distributions need to be defined in terms of aggregators. The question we ask is whether and when it is possible to represent conditional probabilities at all in various relational models. Some aggregators have been shown to be representable by MLNs, by adding auxiliary variables; however it was unknown whether they could be defined without auxiliary variables. For other aggregators, it was not known whether they can be represented by MLNs at all. We obtained surprisingly strong negative results on the capability of flexible undirected relational models such as MLNs to represent aggregators without affecting the original model's distribution. We provide a map of what aspects of the models, including the use of auxiliary variables and quantifiers, result in the ability to represent various aggregators. In addition, we provide proof techniques which can be used to facilitate future theoretic results on relational models, and demonstrate them on relational logistic regression (RLR).


Towards User-Adaptive Information Visualization

AAAI Conferences

This paper summarizes an ongoing multi-year project aiming to uncover knowledge and techniques for devising intelligent environments for user-adaptive visualizations. We ran three studies designed to investigate the impact of user and task characteristics on user performance and satisfaction in different visualization contexts. Eye-tracking data collected in each study was analyzed to uncover possible interactions between user/task characteristics and gaze behavior during visualization processing. Finally, we investigated user models that can assess user characteristics relevant for adaptation from eye tracking data.


SAT Modulo Monotonic Theories

AAAI Conferences

Boolean satisfiability (SAT) solvers have been successfully applied to a wide variety of difficult combinatorial problems. Many further problems can be solved by SAT Modulo Theory (SMT) solvers, which extend SAT solvers to handle additional types of constraints. However, building efficient SMT solvers is often very difficult. In this paper, we define the concept of a Boolean monotonic theory and show how to easily build efficient SMT solvers, including effective theory propagation and clause learning, for such theories. We present examples showing useful constraints that are monotonic, including many graph properties (e.g., shortest paths), and geometric properties (e.g., convex hulls). These constraints arise in problems that are otherwise difficult for SAT solvers to handle, such as procedural content generation. We have implemented several monotonic theory solvers using the techniques we present in this paper and applied these to content generation problems, demonstrating major speed-ups over SAT, SMT, and Answer Set Programming solvers, easily solving instances that were previously out of reach.


Constructing Models of User and Task Characteristics from Eye Gaze Data for User-Adaptive Information Highlighting

AAAI Conferences

A user-adaptive information visualization system capable of learning models of users and the visualization tasks they perform could provide interventions optimized for helping specific users in specific task contexts. In this paper, we investigate the accuracy of predicting visualization tasks, user performance on tasks, and user traits from gaze data. We show that predictions made with a logistic regression model are significantly better than a baseline classifier, with particularly strong results for predicting task type and user performance. Furthermore, we compare classifiers built with interface-independent and interface-dependent features, and show that the interface-independent features are comparable or superior to interface-dependent ones. Finally, we discuss how the accuracy of predictive models is affected if they are trained with data from trials that had highlighting interventions added to the visualization.


Efficient Benchmarking of Hyperparameter Optimizers via Surrogates

AAAI Conferences

Hyperparameter optimization is crucial for achieving peak performance with many machine learning algorithms; however, the evaluation of new optimization techniques on real-world hyperparameter optimization problems can be very expensive. Therefore, experiments are often performed using cheap synthetic test functions with characteristics rather different from those of real benchmarks of interest. In this work, we introduce another option: cheap-to-evaluate surrogates of real hyperparameter optimization benchmarks that share the same hyperparameter spaces and feature similar response surfaces. Specifically, we train regression models on data describing a machine learning algorithmโ€™s performance depending on its hyperparameter setting, and then cheaply evaluate hyperparameter optimization methods using the modelโ€™s performance predictions in lieu of running the real algorithm. We evaluated a wide range of regression techniques, both in terms of how well they predict the performance of new hyperparameter settings and in terms of the quality of surrogate benchmarks obtained. We found that tree-based models capture the performance of several machine learning algorithms well and yield surrogate benchmarks that closely resemble real-world benchmarks, while being much easier to use and orders of magnitude cheaper to evaluate.


Relational Logistic Regression: The Directed Analog of Markov Logic Networks

AAAI Conferences

Relational logistic regression (RLR) was presented at the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR-2014). RLR is the directed analogue of Markov logic networks. Whereas Markov logic networks define distributions in terms of weighted formulae, RLR defines conditional probabilities in terms of weighted formulae. They agree for the supervised learning case when all variables except a query leaf variable are observed. However, they are quite different in representing distributions. The KR-2014 paper defined the RLR formalism, defined canonical forms for RLR in terms of positive conjunctive formulae, indicated the class of conditional probability distributions that can and cannot be represented by RLR, and defined many other aggregators in terms of RLR. In this paper, we summarize these results and compare RLR to Markov logic networks.


Elimination Ordering in Lifted First-Order Probabilistic Inference

AAAI Conferences

Various representations and inference methods have been proposed for lifted probabilistic inference in relational models. Many of these methods choose an order to eliminate (or branch on) the parameterized random variables. Similar to such methods for non-relational probabilistic inference, the order of elimination has a significant role in the performance of the algorithms. Since finding the best order is NP-complete even for non-relational models, heuristics have been proposed to find good orderings in the non-relational models. In this paper, we show that these heuristics are inefficient for relational models, because they fail to consider the population sizes associated with logical variables. We extend existing heuristics for non-relational models and propose new heuristics for relational models. We evaluate the existing and new heuristics on a range of generated relational graphs.