Not enough data to create a plot.
Try a different view from the menu above.
Texas Tech University
Integrating Declarative Programming and Probabilistic Planning for Robots
Zhang, Shiqi (Texas Tech University) | Sridharan, Mohan (Texas Tech University)
Mobile robots deployed in complex real-world domains typically find it difficult to process all sensor inputs or operate without substantial domain knowledge. At the same time, humans may not have the time and expertise to provide elaborateand accurate knowledge or feedback. The architecture described in this paper combines declarative programming and probabilistic sequential decision-making to address these challenges. Specifically, Answer Set Programming (ASP), a declarative programming paradigm, is combined with hierarchical partially observable Markov decision processes (POMDPs), enabling robots to: (a) represent and reason with incomplete domain knowledge, revising existing knowledge using information extracted from sensor inputs; (b) probabilistically model the uncertainty in sensor input processing and navigation; and (c) use domain knowledge to revise probabilistic beliefs, exploiting positive and negative observations to identify situations in which the assigned task can no longer be pursued. All algorithms are evaluated in simulation and on mobile robots locating target objects in indoor domains.
Integrating Visual Learning and Hierarchical Planning for Autonomy in Human-Robot Collaboration
Sridharan, Mohan (Texas Tech University)
Mobile robots deployed in real-world domains frequently find it difficult to process all sensor inputs, or to operate without human input and domain knowledge. At the same time, complex domains make it difficult to provide robots all relevant domain knowledge in advance, and humans are unlikely to have the time and expertise to provide elaborate and accurate feedback. This paper presents an integrated framework that creates novel opportunities for addressing these learning, adaptation and collaboration challenges associated with human-robot collaboration. The framework consists of hierarchical planning, bootstrap learning and online reinforcement learning algorithms that inform and guide each other. As a result, robots are able to make best use of sensor inputs, soliciting high-level feedback from non-expert humans when such feedback is necessary and available. All algorithms are evaluated in simulation and on wheeled robots in dynamic indoor domains.
Temporally Expressive Planning Based on Answer Set Programming with Constraints
Bao, Forrest Sheng (Texas Tech University) | Zhang, Yuanlin (Texas Tech University)
Recently, a new language AC(C) was proposed to integrate answer set programming (ASP) and constraint logic programming (CLP). In this paper, we show that temporally expressive planning problems in PDDL2.1 can be translated into AC(C) and solved using AC(C) solvers. Compared with existing approaches, the new approach puts less restrictions on the planning problems and is easy to extend with new features like PDDL axioms. It can also leverage the inference engine for AC(C) which has the potential to exploit the best reasoning mechanisms developed in the ASP, SAT and CP communities.
Combining Probabilistic Planning and Logic Programming on Mobile Robots
Zhang, Shiqi (Texas Tech University) | Bao, Forrest Sheng (Texas Tech University) | Sridharan, Mohan (Texas Tech University)
Key challenges to widespread deployment of mobile robots to interact with humans in real-world domains include the ability to: (a) robustly represent and revise domain knowledge; (b) autonomously adapt sensing and processing to the task at hand; and (c) learn from unreliable high-level human feedback. Partially observable Markov decision processes (POMDPs) have been used to plan sensing and navigation in different application domains. It is however a challenge to include common sense knowledge obtained from sensory or human inputs in POMDPs. In addition, information extracted from sensory and human inputs may have varying levels of relevance to current and future tasks. On the other hand, although a non-monotonic logic programming paradigm such as Answer Set Programming (ASP) is wellsuited for common sense reasoning, it is unable to model the uncertainty in real-world sensing and navigation (Gelfond 2008). This paper presents a hybrid framework that integrates ASP, hierarchical POMDPs (Zhang and Sridharan 2012) and psychophysics principles to address the challenges stated above. Experimental results in simulation and on mobile robots deployed in indoor domains show that the framework results in reliable and efficient operation.
Visual Search and Multirobot Collaboration Based on Hierarchical Planning
Zhang, Shiqi (Texas Tech University) | Sridharan, Mohan (Texas Tech University)
Mobile robots are increasingly being used in the real-world due to the availability of high-fidelity sensors and sophisticated information processing algorithms. A key challenge to the widespread deployment of robots is the ability to accurately sense the environment and collaborate towards a common objective. Probabilistic sequential decision-making methods can be used to address this challenge because they encapsulate the partial observability and non-determinism of robot domains. However, such formulations soon become intractable for domains with complex state spaces that require real-time operation. Our prior work enabled a mobile robot to use hierarchical partially observable Markov decision processes (POMDPs) to automatically tailor visual sensing and information processing to the task at hand. This paper introduces adaptive observation functions and policy re-weighting in a three-layered POMDP hierarchy to enable reliable and efficient visual processing in dynamic domains. In addition, each robot merges its beliefs with those communicated by teammates, to enable a team of robots to collaborate robustly. All algorithms are evaluated in simulated domains and on physical robots tasked with locating target objects in indoor environments.
Medical Treatment Conflict Resolving in Answer Set Programming
Bao, Forrest Sheng (Texas Tech University) | Zhang, Zhizheng (Southeast University) | Zhang, Yuanlin (Texas Tech University)
Medical treatment decision making is a good application of knowledge representation and reasoning. We are particularly interested in using it to resolve treatment conflicts, a complicated condition when two treatments cannot be given simultaneously to a patient of multiple symptoms. The logic system is required to reason on cases with and without treatment conflicts. Thanks to the nonmonotonicity of Answer Set Programming (ASP), we elegantly automate medical treatment conflict resolving on an example problem and show the importance of nonmonotonicity in medical reasoning.
The AC(C) Language: Integrating Answer Set Programming and Constraint Logic Programming
Bao, Forrest Sheng (Texas Tech University)
Combining Answer Set Programming (ASP) and Constraint Logic Programming (CLP) can create a more powerful language for knowledge representation and reasoning. The language AC(C) is designed to integrate ASP and CLP. Compared with existing integration of ASP and CSP, AC(C) allows representing user-defined constraints. Such integration provides great power for applications requiring logical reasoning involving constraints, e.g., temporal planning. In AC(C), user-defined and primitive constraints can be solved by a CLP inference engine while the logical reasoning over those constraints and regular logic literals is solved by an ASP inference engine (i.e., solver). My PhD work includes improving the language AC(C), implementing its faster inference engine and investigating how effective the new system can be used to solve a challenging application, temporal planning.
Representing Biological Processes in Modular Action Language ALM
Inclezan, Daniela (Texas Tech University) | Gelfond, Michael (Texas Tech University)
This paper presents the formalization of a biological process, cell division, in modular action language ALM. We show how the features of ALM — modularity, separation between an uninterpreted theory and its interpretation — lead to a simple and elegant solution that can be used in answering questions from biology textbooks.
News Recommendation in Forum-Based Social Media
Wang, Jia (Southwestern University of Finance and Economics) | Li, Qing (Southwestern University of Finance and Economics) | Chen, Yuanzhu Peter (Memorial University of Newfoundland, Canada) | Liu, Jiafen (Southwestern University of Finance and Economics) | Zhang, Chen (Texas Tech University) | Lin, Zhangxi
Self-publication of news on Web sites is becoming a common application platform to enable more engaging interaction among users. Discussion in the form of comments following news postings can be effectively facilitated if the service provider can recommend articles based on not only the original news itself but also the thread of changing comments. This turns the traditional news recommendation to a "discussion moderator" that can intelligently assist online forums. In this work, we present a framework to implement such adaptive news recommendation. In addition, to alleviate the problem of recommending essentially identical articles, the relationship (duplication, generalization or specialization) between suggested news articles and the original posting is investigated. Experiments indicate that our proposed solutions provide an enhanced news recommendation service in forum-based social media.