Not enough data to create a plot.
Try a different view from the menu above.
Technion - Israel Institute of Technology
Concept-Based Approach to Word-Sense Disambiguation
Raviv, Ariel (Technion - Israel Institute of Technology) | Markovitch, Shaul (Technion - Israel Institute of Technology)
The task of automatically determining the correct sense of a polysemous word has remained a challenge to this day. In our research, we introduce Concept-Based Disambiguation (CBD), a novel framework that utilizes recent semantic analysis techniques to represent both the context of the word and its senses in a high-dimensional space of natural concepts. The concepts are retrieved from a vast encyclopedic resource, thus enriching the disambiguation process with large amounts of domain-specific knowledge. In such concept-based spaces, more comprehensive measures can be applied in order to pick the right sense. Additionally, we introduce a novel representation scheme, denoted anchored representation, that builds a more specific text representation associated with an anchoring word. We evaluate our framework and show that the anchored representation is more suitable to the task of word-sense disambiguation (WSD). Additionally, we show that our system is superior to state-of-the-art methods when evaluated on domain-specific corpora, and competitive with recent methods when evaluated on a general corpus.
Optimal Search with Inadmissible Heuristics
Karpas, Erez (Technion - Israel Institute of Technology) | Domshlak, Carmel (Technion - Israel Institute of Technology)
Considering cost-optimal heuristic search, we introduce the notion of global admissibility of a heuristic, a property weaker than standard admissibility, yet sufficient for guaranteeing solution optimality within forward search. We describe a concrete approach for creating globally admissible heuristics for domain independent planning; it is based on exploiting information gradually gathered by the search via a new form of reasoning about what we call existential optimal-plan landmarks. We evaluate our approach on some state-of-the-art heuristic search tools for cost-optimal planning, and discuss the results of this evaluation.
Planning for Operational Control Systems with Predictable Exogenous Events
Brafman, Ronen (Ben-Gurion University of the Negev) | Domshlak, Carmel (Technion - Israel Institute of Technology) | Engel, Yagil (IBM Research) | Feldman, Zohar (IBM Research)
Various operational control systems (OCS) are naturally modeled as Markov Decision Processes. OCS often enjoy access to predictions of future events that have substantial impact on their operations. For example, reliable forecasts of extreme weather conditions are widely available, and such events can affect typical request patterns for customer response management systems, the flight and service time of airplanes, or the supply and demand patterns for electricity. The space of exogenous events impacting OCS can be very large, prohibiting their modeling within the MDP; moreover, for many of these exogenous events there is no useful predictive, probabilistic model. Realtime predictions, however, possibly with a short lead-time, are often available. In this work we motivate a model which combines offline MDP infinite horizon planning with realtime adjustments given specific predictions of future exogenous events, and suggest a framework in which such predictions are captured and trigger real-time planning problems. We propose a number of variants of existing MDP solution algorithms, adapted to this context, and evaluate them empirically.
Lower Bounds for Width-Restricted Clause Learning on Formulas of Small Width
Ben-Sasson, Eli (Technion - Israel Institute of Technology) | Johannsen, Jan (Ludwig-Maximilians-Universität München)
Clause learning is a technique used by back-tracking-based propositional satisfiability solvers, where some clauses obtained by analysis of conflicts are added to the formula during backtracking. It has been observed empirically that clause learning does not significantly improve the performance of a solver when restricted to learning clauses of small width only. This experience is supported by lower bound theorems. It is shown that lower bounds on the runtime of width-restricted clause learning follow from lower bounds on the width of resolution proofs. This yields the first lower bounds on width-restricted clause learning for formulas in 3-CNF.
Dictionary Optimization for Block-Sparse Representations
Rosenblum, Kevin (Technion - Israel Institute of Technology) | Zelnik-Manor, Lihi (Technion - Israel Institute of Technology) | Eldar, Yonina C. (Technion - Israel Institute of Technology)
Recent work has demonstrated that using a carefully designed dictionary instead of a predefined one, can improve the sparsity in jointly representing a class of signals. This has motivated the derivation of learning methods for designing a dictionary which leads to the sparsest representation for a given set of signals. In some applications, the signals of interest can have further structure, so that they can be well approximated by a union of a small number of subspaces (e.g., face recognition and motion segmentation). This implies the existence of a dictionary which enables block-sparse representations of the input signals once its atoms are properly sorted into blocks. In this paper, we propose an algorithm for learning a block-sparsifying dictionary of a given set of signals. We do not require prior knowledge on the association of signals into groups (subspaces). Instead, we develop a method that automatically detects the underlying block structure. This is achieved by iteratively alternating between updating the block structure of the dictionary and updating the dictionary atoms to better fit the data. Our experiments show that for block-sparse data the proposed algorithm significantly improves the dictionary recovery ability and lowers the representation error compared to dictionary learning methods that do not employ block structure.