Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Technical University of Munich
Bayesian Robust Attributed Graph Clustering: Joint Learning of Partial Anomalies and Group Structure
Bojchevski, Aleksandar (Technical University of Munich) | Günnemann, Stephan (Technical University of Munich)
We study the problem of robust attributed graph clustering. In real data, the clustering structure is often obfuscated due to anomalies or corruptions. While robust methods have been recently introduced that handle anomalies as part of the clustering process, they all fail to account for one core aspect: Since attributed graphs consist of two views (network structure and attributes) anomalies might materialize only partially, i.e. instances might be corrupted in one view but perfectly fit in the other. In this case, we can still derive meaningful cluster assignments. Existing works only consider complete anomalies. In this paper, we present a novel probabilistic generative model (PAICAN) that explicitly models partial anomalies by generalizing ideas of Degree Corrected Stochastic Block Models and Bernoulli Mixture Models. We provide a highly scalable variational inference approach with runtime complexity linear in the number of edges. The robustness of our model w.r.t. anomalies is demonstrated by our experimental study, outperforming state-of-the-art competitors.
Weakly Supervised Collective Feature Learning From Curated Media
Mukuta, Yusuke (The University of Tokyo) | Kimura, Akisato (NTT Communication Science Laboratories) | Adrian, David B. (Technical University of Munich) | Ghahramani, Zoubin (University of Cambridge)
The current state-of-the-art in feature learning relies on the supervised learning of large-scale datasets consisting of target content items and their respective category labels. However, constructing such large-scale fully-labeled datasets generally requires painstaking manual effort. One possible solution to this problem is to employ community contributed text tags as weak labels, however, the concepts underlying a single text tag strongly depends on the users. We instead present a new paradigm for learning discriminative features by making full use of the human curation process on social networking services (SNSs). During the process of content curation, SNS users collect content items manually from various sources and group them by context, all for their own benefit. Due to the nature of this process, we can assume that (1) content items in the same group share the same semantic concept and (2) groups sharing the same images might have related semantic concepts. Through these insights, we can define human curated groups as weak labels from which our proposed framework can learn discriminative features as a representation in the space of semantic concepts the users intended when creating the groups. We show that this feature learning can be formulated as a problem of link prediction for a bipartite graph whose nodes corresponds to content items and human curated groups, and propose a novel method for feature learning based on sparse coding or network fine-tuning.