Goto

Collaborating Authors

 Rensselaer Polytechnic Institute


Multi-modal Systems As Multi-representational Systems

AAAI Conferences

In earlier work, we have shown how a cognitive architecture can be augmented with a diagrammatic reasoning system to produce a bimodal cognitive architecture. In this paper, we show how this bimodal architecture is also bi-representational (multi-representational in the general case) by describing a desiderata for representational formalisms and showing how the diagrammatic representation in biSoar satisfies these requirements.


Fitting a Model to Behavior Tells Us What Changes Cognitively when under Stress and with Caffeine

AAAI Conferences

A human subject experiment was conducted to investigate caffeine’s effect on appraisal and performance of a mental serial subtraction task. Serial subtraction performance data was collected from three treatment groups: placebo, 200, and 400 mg caffeine. The data were analyzed by caffeine treat ment group and how subjects appraised the task (as challenging or threatening). A cognitive model of the serial subtraction task was developed. The model was fit to the human performance data using a parallel genetic algorithm. How the model’s parameters change to fit the data suggest how cognition changes due to caffeine and appraisal. Over all, the cognitive modeling and optimization results suggest that the speed of vocalization varies the most along with changes to declarative memory. This approach provides a way to compute how cognitive mechanisms change due to moderators.


Reports of the AAAI 2009 Spring Symposia

AI Magazine

The titles of the nine symposia were Agents that Learn from Human Teachers, Benchmarking of Qualitative Spatial and Temporal Reasoning Systems, Experimental Design for Real-World Systems, Human Behavior Modeling, Intelligent Event Processing, Intelligent Narrative Technologies II, Learning by Reading and Learning to Read, Social Semantic Web: Where Web 2.0 Meets Web 3.0, and Technosocial Predictive Analytics. The aim of the Benchmarking of Qualitative Spatial and Temporal Reasoning Systems symposium was to initiate the development of a problem repository in the field of qualitative spatial and temporal reasoning and identify a graded set of challenges for future midterm and long-term research. The Intelligent Event Processing symposium discussed the need for more AI-based approaches in event processing and defined a kind of research agenda for the field, coined as intelligent complex event processing (iCEP). The Intelligent Narrative Technologies II AAAI symposium discussed innovations, progress, and novel techniques in the research domain.


Reports of the AAAI 2009 Spring Symposia

AI Magazine

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, was pleased to present the 2009 Spring Symposium Series, held Monday through Wednesday, March 23–25, 2009 at Stanford University. The titles of the nine symposia were Agents that Learn from Human Teachers, Benchmarking of Qualitative Spatial and Temporal Reasoning Systems, Experimental Design for Real-World Systems, Human Behavior Modeling, Intelligent Event Processing, Intelligent Narrative Technologies II, Learning by Reading and Learning to Read, Social Semantic Web: Where Web 2.0 Meets Web 3.0, and Technosocial Predictive Analytics. The goal of the Agents that Learn from Human Teachers was to investigate how we can enable software and robotics agents to learn from real-time interaction with an everyday human partner. The aim of the Benchmarking of Qualitative Spatial and Temporal Reasoning Systems symposium was to initiate the development of a problem repository in the field of qualitative spatial and temporal reasoning and identify a graded set of challenges for future midterm and long-term research. The Experimental Design symposium discussed the challenges of evaluating AI systems. The Human Behavior Modeling symposium explored reasoning methods for understanding various aspects of human behavior, especially in the context of designing intelligent systems that interact with humans. The Intelligent Event Processing symposium discussed the need for more AI-based approaches in event processing and defined a kind of research agenda for the field, coined as intelligent complex event processing (iCEP). The Intelligent Narrative Technologies II AAAI symposium discussed innovations, progress, and novel techniques in the research domain. The Learning by Reading and Learning to Read symposium explored two aspects of making natural language texts semantically accessible to, and processable by, machines. The Social Semantic Web symposium focused on the real-world grand challenges in this area. Finally, the Technosocial Predictive Analytics symposium explored new methods for anticipatory analytical thinking that provide decision advantage through the integration of human and physical models.


An Ensemble Learning and Problem Solving Architecture for Airspace Management

AAAI Conferences

In this paper we describe the application of a novel learning and problem solving architecture to the domain of airspace management, where multiple requests for the use of airspace need to be reconciled and managed automatically. The key feature of our "Generalized Integrated Learning Architecture" (GILA) is a set of integrated learning and reasoning (ILR) systems coordinated by a central meta-reasoning executive (MRE). Each ILR learns independently from the same training example and contributes to problem-solving in concert with other ILRs as directed by the MRE. Formal evaluations show that our system performs as well as or better than humans after learning from the same training data. Further, GILA outperforms any individual ILR run in isolation, thus demonstrating the power of the ensemble architecture for learning and problem solving.


Reports of the AAAI 2008 Fall Symposia

AI Magazine

The Association for the Advancement of Artificial Intelligence was pleased to present the 2008 Fall Symposium Series, held Friday through Sunday, November 7-9, at the Westin Arlington Gateway in Arlington, Virginia. The titles of the seven symposia were (1) Adaptive Agents in Cultural Contexts, (2) AI in Eldercare: New Solutions to Old Problems, (3) Automated Scientific Discovery, (4) Biologically Inspired Cognitive Architectures, (5) Education Informatics: Steps toward the International Internet Classroom, (6) Multimedia Information Extraction, and (7) Naturally Inspired AI.


Reports of the AAAI 2008 Fall Symposia

AI Magazine

These underpinnings in genetics and fields are vast, variegated, informed by memetics, studying phenomena such disparate theoretical and technical disciplines, as coalition formation in an artificial and interrelated. Other applications provided an updated perspective ethical concerns related to the use of included case-based retrieval of to a previous symposium held in fall eldercare technology to ensure that narratives culturally relevant to a 2005 on the same topic. Some models focused One major theme of the symposium The symposium ended with a more directly on adaptation, from machine-learning was to investigate the use of sensor brainstorming session on possible solutions and game-theoretic networks in the home environment to for two real-life scenarios for perspectives, but discussions suggested provide safety, to monitor activities of ailing elders and their caregivers. The ways in which those adaptations daily living, to assess physical and cognitive exercise was helpful in grounding the might vary from one cultural context function, and to identify participants in the lives of older adults to another. Work was also should address real needs.


Inference with Relational Theories over Infinite Domains

AAAI Conferences

Many important tasks can be cast as weighted relational satisfiability problems.  Propositionalizing relational theories and making inferences with them using SAT algorithms has proven effective in many cases.  However, these approaches require that all objects in a domain be known in advance.  Many domains, from language understanding to machine vision, involve reasoning about objects that are not known beforehand.  Theories with unknown objects can require models with infinite objects in their domain and thus lead to propositionalized SAT theories that existing algorithms cannot deal with.  To address these problems, we characterize a class of relational generative weighted satisfiability theories (GenSAT) over potentially infinite domains and propose an algorithm, GenDPLL, for finding models of these theories.  We introduce the notion of a relevant model and an increasing cost theory to identify conditions under which GenDPLL is complete, even when a theory has infinite models.


AAAI 2008 Spring Symposia Reports

AI Magazine

The titles of the eight symposia were as follows: (1) AI Meets Business Rules and Process Management, (2) Architectures for Intelligent Theory-Based Agents, (3) Creative Intelligent Systems, (4) Emotion, Personality, and Social Behavior, (5) Semantic Scientific Knowledge Integration, (6) Social Information Processing, (7) Symbiotic Relationships between Semantic Web and Knowledge Engineering, (8) Using AI to Motivate Greater Participation in Computer Science The goal of the AI Meets Business Rules and Process Management AAAI symposium was to investigate the various approaches and standards to represent business rules, business process management and the semantic web with respect to expressiveness and reasoning capabilities. The Semantic Scientific Knowledge Symposium was interested in bringing together the semantic technologies community with the scientific information technology community in an effort to build the general semantic science information community. The Social Information Processing's goal was to investigate computational and analytic approaches that will enable users to harness the efforts of large numbers of other users to solve a variety of information processing problems, from discovering high-quality content to managing common resources. The purpose of the Using AI to Motivate Greater Participation in Computer Science symposium was to identify ways that topics in AI may be used to motivate greater student participation in computer science by highlighting fun, engaging, and intellectually challenging developments in AI-related curriculum at a number of educational levels.


AAAI 2008 Spring Symposia Reports

AI Magazine

The Association for the Advancement of Artificial Intelligence (AAAI) was pleased to present the AAAI 2008 Spring Symposium Series, held Wednesday through Friday, March 26–28, 2008 at Stanford University, California. The titles of the eight symposia were as follows: (1) AI Meets Business Rules and Process Management, (2) Architectures for Intelligent Theory-Based Agents, (3) Creative Intelligent Systems, (4) Emotion, Personality, and Social Behavior, (5) Semantic Scientific Knowledge Integration, (6) Social Information Processing, (7) Symbiotic Relationships between Semantic Web and Knowledge Engineering, (8) Using AI to Motivate Greater Participation in Computer Science The goal of the AI Meets Business Rules and Process Management AAAI symposium was to investigate the various approaches and standards to represent business rules, business process management and the semantic web with respect to expressiveness and reasoning capabilities. The focus of the Architectures for Intelligent Theory-Based Agents AAAI symposium was the definition of architectures for intelligent theory-based agents, comprising languages, knowledge representation methodologies, reasoning algorithms, and control loops. The Creative Intelligent Systems Symposium included five major discussion sessions and a general poster session (in which all contributing papers were presented). The purpose of this symposium was to explore the synergies between creative cognition and intelligent systems. The goal of the Emotion, Personality, and Social Behavior symposium was to examine fundamental issues in affect and personality in both biological and artificial agents, focusing on the roles of these factors in mediating social behavior. The Semantic Scientific Knowledge Symposium was interested in bringing together the semantic technologies community with the scientific information technology community in an effort to build the general semantic science information community. The Social Information Processing's goal was to investigate computational and analytic approaches that will enable users to harness the efforts of large numbers of other users to solve a variety of information processing problems, from discovering high-quality content to managing common resources. The goal of the Symbiotic Relationships between the Semantic Web and Software Engineering symposium was to explore how the lessons learned by the knowledge-engineering community over the past three decades could be applied to the bold research agenda of current workers in semantic web technologies. The purpose of the Using AI to Motivate Greater Participation in Computer Science symposium was to identify ways that topics in AI may be used to motivate greater student participation in computer science by highlighting fun, engaging, and intellectually challenging developments in AI-related curriculum at a number of educational levels. Technical reports of the symposia were published by AAAI Press.