Plotting

 King Abdullah University of Science and Technology


FeaBoost: Joint Feature and Label Refinement for Semantic Segmentation

AAAI Conferences

We propose a novel approach, called FeaBoost, to image semantic segmentation with only image-level labels taken as weakly-supervised constraints. Our approach is motivated from two evidences: 1) each superpixel can be represented as a linear combination of basic components (e.g., predefined classes); 2) visually similar superpixels have high probability to share the same set of labels, i.e., they tend to have common combination of predefined classes. By taking these two evidences into consideration, semantic segmentation is formulated as joint feature and label refinement over superpixels. Furthermore, we develop an efficient FeaBoost algorithm to solve such optimization problem. Extensive experiments on the MSRC and LabelMe datasets demonstrate the superior performance of our FeaBoost approach in comparison with the state-of-the-art methods, especially when noisy labels are provided for semantic segmentation.


Optimizing Multivariate Performance Measures from Multi-View Data

AAAI Conferences

To date, many machine learning applications have multiple views of features, and different applications require specific multivariate performance measures, such as the F-score for retrieval. However, existing multivariate performance measure optimization methods are limited to single-view data, while traditional multi-view learning methods cannot optimize multivariate performance measures directly. To fill this gap, in this paper, we propose the problem of optimizing multivariate performance measures from multi-view data, and an effective method to solve it. We propose to learn linear discriminant functions for different views, and combine them to construct an overall multivariate mapping function for multi-view data. To learn the parameters of the linear discriminant functions of different views to optimize a given multivariate performance measure, we formulate an optimization problem. In this problem, we propose to minimize the complexity of the linear discriminant function of each view, promote the consistency of the responses of different views over the same data points, and minimize the upper boundary of the corresponding loss of a given multivariate performance measure. To optimize this problem, we develop an iterative cutting-plane algorithm. Experiments on four benchmark data sets show that it not only outperforms traditional single-view based multivariate performance optimization methods, but also achieves better results than ordinary multi-view learning methods.


Noise-Robust Semi-Supervised Learning by Large-Scale Sparse Coding

AAAI Conferences

This paper presents a large-scale sparse coding algorithm to deal with the challenging problem of noise-robust semi-supervised learning over very large data with only few noisy initial labels. By giving an L1-norm formulation of Laplacian regularization directly based upon the manifold structure of the data, we transform noise-robust semi-supervised learning into a generalized sparse coding problem so that noise reduction can be imposed upon the noisy initial labels. Furthermore, to keep the scalability of noise-robust semi-supervised learning over very large data, we make use of both nonlinear approximation and dimension reduction techniques to solve this generalized sparse coding problem in linear time and space complexity. Finally, we evaluate the proposed algorithm in the challenging task of large-scale semi-supervised image classification with only few noisy initial labels. The experimental results on several benchmark image datasets show the promising performance of the proposed algorithm.


Efficient Active Learning of Halfspaces via Query Synthesis

AAAI Conferences

Active learning is a subfield of machine learning that has been successfully used in many applications including text classification and bioinformatics. One of the fundamental branches of active learning is query synthesis, where the learning agent constructs artificial queries from scratch in order to reveal sensitive information about the true decision boundary. Nevertheless, the existing literature on membership query synthesis has focused on finite concept classes with a limited extension to real-world applications. In this paper, we present an efficient spectral algorithm for membership query synthesis for halfspaces, whose sample complexity is experimentally shown to be near-optimal. At each iteration, the algorithm consists of two steps. First, a convex optimization problem is solved that provides an approximate characterization of the version space. Second, a principal component is extracted, which yields a synthetic query that shrinks the version space exponentially fast. Unlike traditional methods in active learning, the proposed method can be readily extended into the batch setting by solving for the top k eigenvectors in the second step. Experimentally, it exhibits a significant improvement over traditional approaches such as uncertainty sampling and representative sampling. For example, to learn a halfspace in the Euclidean plane with 25 dimensions and an estimation error of 1E-4, the proposed algorithm uses less than 3% of the number of queries required by uncertainty sampling.


Supervised Transfer Sparse Coding

AAAI Conferences

A combination of the sparse coding and transfer learning techniques was shown to be accurate and robust in classification tasks where training and testing objects have a shared feature space but are sampled from different underlying distributions, i.e., belong to different domains. The key assumption in such case is that in spite of the domain disparity, samples from different domains share some common hidden factors. Previous methods often assumed that all the objects in the target domain are unlabeled, and thus the training set solely comprised objects from the source domain. However, in real world applications, the target domain often has some labeled objects, or one can always manually label a small number of them. In this paper, we explore such possibility and show how a small number of labeled data in the target domain can significantly leverage classification accuracy of the state-of-the-art transfer sparse coding methods. We further propose a unified framework named supervised transfer sparse coding (STSC) which simultaneously optimizes sparse representation, domain transfer and classification. Experimental results on three applications demonstrate that a little manual labeling and then learning the model in a supervised fashion can significantly improve classification accuracy.


A Mouse-Trajectory Based Model for Predicting Query-URL Relevance

AAAI Conferences

For the learning-to-ranking algorithms used in commercial search engines, a conventional way to generate the training examples is to employ professional annotators to label the relevance of query-url pairs. Since label quality depends on the expertise of annotators to a large extent, this process is time-consuming and labor-intensive. Automatically generating labels from click-through data has been well studied to have comparable or better performance than human judges. Click-through data present users’ action and imply their satisfaction on search results, but exclude the interactions between users and search results beyond the page-view level (e.g., eye and mouse movements). This paper proposes a novel approach to comprehensively consider the information underlying mouse trajectory and click-through data so as to describe user behaviors more objectively and achieve a better understanding of the user experience. By integrating multi-sources data, the proposed approach reveals that the relevance labels of query-url pairs are related to positions of urls and users’ behavioral features. Based on their correlations, query-url pairs can be labeled more accurately and search results are more satisfactory to users. The experiments that are conducted on the most popular Chinese commercial search engine (Baidu) validated the rationality of our research motivation and proved that the proposed approach outperformed the state-of-the-art methods.