Goto

Collaborating Authors

 Jilin University


Large Scale Diagnosis Using Associations between System Outputs and Components

AAAI Conferences

Model-based diagnosis (MBD) uses an abstraction of system to diagnose possible faulty functions of an underlying system. To improve the solution efficiency for multi-fault diagnosis problems, especially for large scale systems, this paper proposes a method to induce reasonable diagnosis solutions, under coarse diagnosis, by using the relationships between system outputs and components. Compared to existing diagnosis methods, the proposed framework only needs to consider associations between outputs and components by using an assumption-based truth maintenance system (ATMS) [de Kleer 1986] to obtain correlation components for every output node. As a result, our method significantly reduces the number of variables required for model diagnosis, which makes it suitable for large scale circuit systems.


New Worst-Case Upper Bound for #2-SAT and #3-SAT with the Number of Clauses as the Parameter

AAAI Conferences

The rigorous theoretical analyses of algorithms for #SAT have been proposed in the literature. As we know, previous algorithms for solving #SAT have been analyzed only regarding the number of variables as the parameter. However, the time complexity for solving #SAT instances depends not only on the number of variables, but also on the number of clauses. Therefore, it is significant to exploit the time complexity from the other point of view, i.e. the number of clauses. In this paper, we present algorithms for solving #2-SAT and #3-SAT with rigorous complexity analyses using the number of clauses as the parameter. By analyzing the algorithms, we obtain the new worst-case upper bounds O(1.1892m) for #2-SAT and O(1.4142m) for #3-SAT, where m is the number of clauses.


Enhancing the Context-Enhanced Additive Heuristic with Precedence Constraints

AAAI Conferences

Recently, Helmert and Geffner proposed the context-enhanced additive heuristic, where fact costs are evaluated relative to context states that arise from achieving first a pivot condition of each operator. As Helmert and Geffner pointed out, the method can be generalized to consider contexts arising from arbitrary precedence constraints over operator conditions instead. Herein, we provide such a generalization. We extend Helmert and Geffner's equations, and discuss a number of design choices that arise. Drawing on previous work on goal orderings, we design a family of methods for automatically generating precedence constraints. We run large-scale experiments, showing that the technique can help significantly, depending on the choice of precedence constraints. We shed some light on this by profiling the behavior of all possible precedence constraints, using a sampling technique.